237 research outputs found

    Tissue Adequacy and Safety of Percutaneous Transthoracic Needle Biopsy for Molecular Analysis in Non-Small Cell Lung Cancer: A Systematic Review and Meta-analysis

    Get PDF
    OBJECTIVE: We conducted a systematic review and meta-analysis of the tissue adequacy and complication rates of percutaneous transthoracic needle biopsy (PTNB) for molecular analysis in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: We performed a literature search of the OVID-MEDLINE and Embase databases to identify original studies on the tissue adequacy and complication rates of PTNB for molecular analysis in patients with NSCLC published between January 2005 and January 2020. Inverse variance and random-effects models were used to evaluate and acquire meta-analytic estimates of the outcomes. To explore heterogeneity across the studies, univariable and multivariable meta-regression analyses were performed. RESULTS: A total of 21 studies with 2232 biopsies (initial biopsy, 8 studies; rebiopsy after therapy, 13 studies) were included. The pooled rates of tissue adequacy and complications were 89.3% (95% confidence interval [CI]: 85.6%-92.6%; I(2) = 0.81) and 17.3% (95% CI: 12.1%-23.1%; I(2) = 0.89), respectively. These rates were 93.5% and 22.2% for the initial biopsies and 86.2% and 16.8% for the rebiopsies, respectively. Severe complications, including pneumothorax requiring chest tube placement and massive hemoptysis, occurred in 0.7% of the cases (95% CI: 0%-2.2%; I(2) = 0.67). Multivariable meta-regression analysis showed that the tissue adequacy rate was not significantly lower in studies on rebiopsies (p = 0.058). The complication rate was significantly higher in studies that preferentially included older adults (p = 0.001). CONCLUSION: PTNB demonstrated an average tissue adequacy rate of 89.3% for molecular analysis in patients with NSCLC, with a complication rate of 17.3%. PTNB is a generally safe and effective diagnostic procedure for obtaining tissue samples for molecular analysis in NSCLC. Rebiopsy may be performed actively with an acceptable risk of complications if clinically required

    Pleural amyloidosis mimicking malignant mesothelioma

    Get PDF
    Pleural involvement of amyloidosis is rare and usually manifested as persistent massive effusion. However, it may present as pleural nodules or plaques without massive effusion. A 55-year-old man was referred for abnormalities of chest radiography and the computed tomography (CT) exam revealed multiple pleural nodules without effusion in the left hemithorax. The radiologic impression was pleural malignancy, and whole body 18F-fluorodeoxyglucose positron emission tomography-CT exam was performed. Not only corresponding pleural nodules but also other areas along the left pleura were hypermetabolic, whereas no hypermetabolic lesions were noted outside of the thorax. Preoperative diagnosis was made as malignant mesothelioma. During left pleuropneumonectomy, multiple hard whitish nodules or plaques were found along the pleura, and which were proven to amyloidosis on frozen section. The patient underwent not left pleuropneumonectomy but folup. Because of difficulty of accurate diagnosis, we report the localized pleural amyloidosis for awareness of the disease

    Control of Interface Defects for Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes Using Nickel Oxide Hole Injection Layer.

    Get PDF
    Metal halide perovskites (MHPs) have emerged as promising materials for light-emitting diodes owing to their narrow emission spectrum and wide range of color tunability. However, the low exciton binding energy in MHPs leads to a competition between the trap-mediated nonradiative recombination and the bimolecular radiative recombination. Here, efficient and stable green emissive perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency of 14.6% are demonstrated through compositional, dimensional, and interfacial modulations of MHPs. The interfacial energetics and optoelectronic properties of the perovskite layer grown on a nickel oxide (NiO x ) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hole injection interfaces are investigated. The better interface formed between the NiO x /perovskite layers in terms of lower density of traps/defects, as well as more balanced charge carriers in the perovskite layer leading to high recombination yield of carriers are the main reasons for significantly improved device efficiency, photostability of perovskite, and operational stability of PeLEDs

    Pericoronary fat attenuation index in computed tomography angiography is associated with mortality in end-stage renal disease

    Get PDF
    Background An increased pericoronary fat attenuation index (FAI) on computed tomography angiography (CTA) is associated with increased all-cause and cardiac mortality in the general population. However, the ability of pericoronary FAI to predict long-term outcomes in chronic kidney disease (CKD) patients is unknown. Methods In this single-center retrospective longitudinal cohort study, we assessed the utility of CTA-based pericoronary FAI measurement to predict mortality of CKD patients, including those with end-stage renal disease (ESRD). Mapping and analysis of pericoronary FAI involved three major proximal coronary arteries. The prognostic value of pericoronary FAI for long-term mortality was assessed with multivariable Cox regression models. Results Among 268 CKD participants who underwent coronary CTA, 209 participants with left anterior descending artery (LAD) FAI measurements were included. The pericoronary FAI measured at the LAD was not significantly associated with adjusted risk of all-cause mortality (hazard ratio [HR], 2.08; 95% confidence interval [CI], 0.94–3.51) in any CKD group. However, ESRD patients with elevated pericoronary FAI values had a greater adjusted risk of all-cause mortality compared with the low-FAI group (HR, 2.26; 95% CI, 1.11–4.61). Conclusion The pericoronary FAI measured at the LAD predicted long-term mortality in patients with ESRD, which could provide an opportunity for early primary intervention in ESRD patients

    Noise Amplification in Human Tumor Suppression following Gamma Irradiation

    Get PDF
    The influence of noise on oscillatory motion is a subject of permanent interest, both for fundamental and practical reasons. Cells respond properly to external stimuli by using noisy systems. We have clarified the effect of intrinsic noise on the dynamics in the human cancer cells following gamma irradiation. It is shown that the large amplification and increasing mutual information with delay are due to coherence resonance. Furthermore, frequency domain analysis is used to study the mechanisms

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    • 

    corecore