36 research outputs found

    Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

    Get PDF
    The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initial preparation is followed by a densification step involving hot-pressing, which reduces the amount of secondary phases, as verified by synchrotron X-ray diffraction, leading to the desired half-Heusler compounds, demonstrating that hot-pressing should be treated as part of the preparative process. For TiNiSn, high thermoelectric power factors of 2 mW/mK^2 at temperatures in the 700 to 800 K range, and zT values of around 0.4 are found, with the microwave-prepared sample displaying somewhat superior properties to conventionally prepared half-Heuslers due to lower thermal conductivity. The TiCoSb sample shows a lower thermoelectric figure of merit when prepared using microwave methods because of a metallic second phase

    Interactions of ultrahigh-energy cosmic rays with photons in the galactic center

    Full text link
    Ultrahigh-energy cosmic rays passing through the central region of the Galaxy interact with starlight and the infrared photons. Both nuclei and protons generate secondary fluxes of photons and neutrinos on their passage through the central region. We compute the fluxes of these secondary particles, the observations of which can be used to improve one's understanding of origin and composition of ultrahigh-energy comic rays, especially if the violation of the Greisen--Zatespin--Kuzmin cutoff is confirmed by the future data.Comment: 8 pages, 2 figure

    Pulsar kicks from neutrino oscillations

    Full text link
    Neutrino oscillations in a core-collapse supernova may be responsible for the observed rapid motions of pulsars. Given the present bounds on the neutrino masses, the pulsar kicks require a sterile neutrino with mass 2-20 keV and a small mixing with active neutrinos. The same particle can be the cosmological dark matter. Its existence can be confirmed the by the X-ray telescopes if they detect a 1-10 keV photon line from the decays of the relic sterile neutrinos. In addition, one may be able to detect gravity waves from a pulsar being accelerated by neutrinos in the event of a nearby supernova.Comment: invited review article to appear in Int. J. Mod. Phys. (21 pages, 6 figures

    Unstable superheavy relic particles as a source of neutrinos responsible for the ultrahigh-energy cosmic rays

    Full text link
    Decays of superheavy relic particles may produce extremely energetic neutrinos. Their annihilations on the relic neutrinos can be the origin of the cosmic rays with energies beyond the Greisen-Zatsepin-Kuzmin cutoff. The red shift acts as a cosmological filter selecting the sources at some particular value z_e, for which the present neutrino energy is close to the Z pole of the annihilation cross section. We predict no directional correlation of the ultrahigh-energy cosmic rays with the galactic halo. At the same time, there can be some directional correlations in the data, reflecting the distribution of matter at red shift z=z_e. Both of these features are manifest in the existing data. Our scenario is consistent with the neutrino mass reported by Super-Kamiokande and requires no lepton asymmetry or clustering of the background neutrinos.Comment: 3 pages, revtex; references adde

    Monte Carlo simulation for jet fragmentation in SUSY-QCD

    Get PDF
    We present results from a new Monte Carlo simulation for jet fragmentation in QCD and SUSY QCD for large primary energies s\sqrt s up to 101610^{16} GeV. In the case of SUSY QCD the simulation takes into account not only gluons and quarks as cascading particles, but also their supersymmetric partners. A new model-independent hadronization scheme is developed, in which the hadronization functions are found from LEP data. An interesting feature of SUSY QCD is the prediction of a sizeable flux of the lightest supersymmetric particles (LSPs), if R-parity is conserved. About 10% of the jet energy is transferred to LSPs which, owing to their harder spectra, constitute an important part of the spectra for large x=E/Ejetx=E/E_{jet}. Spectra of protons and of secondary particles, photons and neutrinos, are also calculated. These results have implications for the decay of superheavy particles with masses up to the GUT scale, which have been suggested as a source of ultrahigh energy cosmic rays.Comment: latex, 25 pages with 17 eps figure

    Neutrino cross sections at high energies and the future observations of ultrahigh-energy cosmic rays

    Full text link
    We show that future detectors of ultrahigh-energy cosmic-ray neutrinos will be able to measure neutrino-nucleon cross section at energies as high as 10^{11}GeV or higher. We find that the flux of up-going charged leptons per unit surface area produced by neutrino interactions below the surface is inversely proportional to the cross section. This contrasts with the rate of horizontal air showers (HAS) due to neutrino interactions in the atmosphere, which is proportional to the cross section. Thus, by comparing the HAS and up-going air shower (UAS) rates, the neutrino-nucleon cross section can be inferred. Taken together, up-going and horizontal rates ensure a healthy total event rate, regardless of the value of the cross section.Comment: 4 pages, 2 figures, revtex; final draf

    Neutrinos produced by ultrahigh-energy photons at high red shift

    Get PDF
    Some of the proposed explanations for the origin of ultrahigh-energy cosmic rays invoke new sources of energetic photons (e.g., topological defects, relic particles, etc.). At high red shift, when the cosmic microwave background has a higher temperature but the radio background is low, the ultrahigh-energy photons can generate neutrinos through pair-production of muons and pions. Neutrinos produced at high red shift by slowly evolving sources can be detected. Rapidly evolving sources of photons can be ruled out based on the existing upper limit on the neutrino flux.Comment: 4 pages, revtex; to appear in Phys. Rev. Let

    Transit times – the link between hydrology and water quality at the catchment scale

    Get PDF
    In spite of trying to understand processes in the same spatial domain, the catchment hydrology and water quality scientific communities are relatively disconnected and so are their respective models. This is emphasized by an inadequate representation of transport processes, in both catchment-scale hydrological and water quality models. While many hydrological models at the catchment scale only account for pressure propagation and not for mass transfer, catchment scale water quality models are typically limited by overly simplistic representations of flow processes. With the objective of raising awareness for this issue and outlining potential ways forward we provide a non-technical overview of (1) the importance of hydrology-controlled transport through catchment systems as the link between hydrology and water quality; (2) the limitations of current generation catchment-scale hydrological and water quality models; (3) the concept of transit times as tools to quantify transport and (4) the benefits of transit time based formulations of solute transport for catchment-scale hydrological and water quality models. There is emerging evidence that an explicit formulation of transport processes, based on the concept of transit times has the potential to improve the understanding of the integrated system dynamics of catchments and to provide a stronger link between catchment-scale hydrological and water quality models

    Highest-energy cosmic rays from Fermi-degenerate relic neutrinos consistent with Super-Kamiokande results

    Get PDF
    Relic neutrinos with mass 0.07 (+0.02/-0.04) eV, in the range consistent with Super-Kamiokande data, can explain the cosmic rays with energies in excess of the Greisen-Zatsepin-Kuzmin cutoff. The spectrum of ultra-high energy cosmic rays produced in this fashion has some distinctive features that may help identify their origin. Our mechanism does not require but is consistent with a neutrino density high enough to be a new kind of hot dark matter.Comment: 3 pages, revtex; final version (minor changes in wording and references
    corecore