193 research outputs found

    Body Size in Amblyrhiza inundata (Rodentia, Caviomorpha), an Extinct Megafaunal Rodent From the Anguilla Bank, West Indies: Estimates and Implications

    Get PDF
    Rodent species typically evolve larger mean body sizes when isolated on islands, but the extinct caviomorph Amblyrhiza inundata, known only from Quaternary cave deposits on the islands of Anguilla and St. Martin (northern Lesser Antilles), provides an unusually dramatic example of insular gigantism. Here we report on a series of body mass estimates for Amblyrhiza using predictive equations based on anteroposterior diameters and cortical cross-sectional areas of humeral and femoral diaphyses. Analyses of 14 isolated specimens (5 femoral, 9 humeral), all representing adult or near adult animals, yield body mass estimates ranging from slightly less than 50 kg to more than 200 kg. Body size estimates derived from humeral measurements are lower than those derived from femoral measurements, but the significance of this will remain unclear until matched limb bones (i.e., specimens from the same animal) are recovered. Incisor measurements are also highly variable, but in this case the distribution is demonstrably bimodal. Presence of multiple coeval species, temporal variation, limb heterogeneity, and sexual dimorphism all qualify as possible explanations of the variation encountered in Amblyrhiza data sets, but available samples are not adequate for making a robust choice among them. Body size affects many life history variables, including demography. Population estimates derived from empirical data and predictive equations suggest that only a few thousand individuals of Amblyrhiza could have occupied the islands of the Anguilla Bank at any one time during the Late Quaternary. At certain times-for example, during the last interglacial (Sangamonian) highstand-population numbers might have sunk to only a few hundred. Absolutely small population sizes of Amblyrhiza and severe fluctuations in island area during the late Quaternary surely affected its susceptibility to extinction, whether or not humans were ultimately responsible for the event (for which there is as yet no direct evidence)

    Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion

    Get PDF
    Alligator hindlimbs show high torsional loads during terrestrial locomotion, in sharp contrast to the bending or axial compressive loads that predominate in animals that use parasagittal limb movements. The present study integrates new data on hindlimb muscle function with previously obtained data on hindlimb kinematics, motor patterns, ground reaction forces and bone strain in order to (1) assess mechanisms underlying limb bone torsion during non-parasagittal locomotion in alligators and (2) improve understanding of hindlimb dynamics during terrestrial locomotion. Three dynamic stance phase periods were recognized: limb-loading, support-and-propulsion, and limb-unloading phases. Shear stresses due to torsion were maximized during the limb-loading phase, during which the ground reaction force (GRF) and caudofemoralis (CFL) muscles generated opposing moments about the femur. Hindlimb retraction during the subsequent stance-and-propulsion phase involves substantial medial rotation of the femur, powered largely by coordinated action of the GRF and CFL. Several muscles that actively shorten to flex and extend limb joints during stance phase in sprawling and erect quadrupeds act in isometric or even eccentric contraction in alligators, stabilizing the knee and ankle during the support-and-propulsion phase. Motor patterns in alligators reveal the presence of local and temporal segregation of muscle functions during locomotion with muscles that lie side by side dedicated to performing different functions and only one of 16 muscles showing clear bursts of activity during both stance and swing phases. Data from alligators add to other recent discoveries that homologous muscles across quadrupeds often do not move joints the same way as is commonly assumed. Although alligators are commonly considered models for early semi-erect tetrapod locomotion, many aspects of hindlimb kinematics, muscle activity patterns, and femoral loading patterns in alligators appear to be derived in alligators rather than reflecting an ancestral semi-erect condition

    Whole Body Mechanics of Stealthy Walking in Cats

    Get PDF
    The metabolic cost associated with locomotion represents a significant part of an animal's metabolic energy budget. Therefore understanding the ways in which animals manage the energy required for locomotion by controlling muscular effort is critical to understanding limb design and the evolution of locomotor behavior. The assumption that energetic economy is the most important target of natural selection underlies many analyses of steady animal locomotion, leading to the prediction that animals will choose gaits and postures that maximize energetic efficiency. Many quadrupedal animals, particularly those that specialize in long distance steady locomotion, do in fact reduce the muscular contribution required for walking by adopting pendulum-like center of mass movements that facilitate exchange between kinetic energy (KE) and potential energy (PE) [1]–[4]. However, animals that are not specialized for long distance steady locomotion may face a more complex set of requirements, some of which may conflict with the efficient exchange of mechanical energy. For example, the “stealthy” walking style of cats may demand slow movements performed with the center of mass close to the ground. Force plate and video data show that domestic cats (Felis catus, Linnaeus, 1758) have lower mechanical energy recovery than mammals specialized for distance. A strong negative correlation was found between mechanical energy recovery and diagonality in the footfalls and there was also a negative correlation between limb compression and diagonality of footfalls such that more crouched postures tended to have greater diagonality. These data show a previously unrecognized mechanical relationship in which crouched postures are associated with changes in footfall pattern which are in turn related to reduced mechanical energy recovery. Low energy recovery was not associated with decreased vertical oscillations of the center of mass as theoretically predicted, but rather with posture and footfall pattern on the phase relationship between potential and kinetic energy. An important implication of these results is the possibility of a tradeoff between stealthy walking and economy of locomotion. This potential tradeoff highlights the complex and conflicting pressures that may govern the locomotor choices that animals make

    Ontogeny of feeding performance and biomechanics in coyotes

    Get PDF
    Developing organisms must reconcile conflicts between demands of survival within the current life‐history stage, with those of maturation, while negotiating the transitions through succeeding stages. In the case of feeding performance, the parts of the feeding apparatus and their biomechanics must maintain functional integrity to meet the feeding needs of a juvenile even as they develop toward their adult form. We concurrently examine the ontogenetic relationships of feeding performance, dentition and feeding biomechanics, relative to key life‐history events, utilizing samples drawn from the same population of known‐age coyotes Canis latrans . The development of feeding performance is asynchronous with development of both feeding biomechanics and skull morphology; feeding performance lags during ontogeny despite surprisingly large early mechanical advantage of the temporalis, due in part, to early relative maturity of mandibular shape. Feeding performance and biomechanics, like skull morphology, mature well after weaning at 6 weeks of age. Late maturation of bite strength and feeding performance is mediated by ongoing and continued growth of the temporalis muscles as measured by maximum zygomatic arch breadth (ZAB). Males and females may resolve developmental conflicts differently, as females trade earlier maturity for smaller maximum ZAB, decreased relative bite strength and diminished feeding performance, compared with males. The asynchrony of feeding performance development seen in coyotes, is also characteristic of a highly specialized carnivore, the spotted hyena, but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. This developmental asynchrony between feeding performance and morphology suggests that a certain minimum threshold of physical growth and development, together with the associated development of biomechanics, are required to produce effective mastication. The relationships among biomechanics, life‐history schedules and ontogeny of feeding performance have obvious implications for fitness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88048/1/jzo847.pd

    Body Shape and Life Style of the Extinct Balearic Dormouse Hypnomys (Rodentia, Gliridae): New Evidence from the Study of Associated Skeletons

    Get PDF
    Hypnomys is a genus of Gliridae (Rodentia) that occurred in the Balearic Islands until Late Holocene. Recent finding of a complete skeleton of the chronospecies H. morpheus (Late Pleistocene-Early Holocene) and two articulated skeletons of H. cf. onicensis (Late Pliocene) allowed the inference of body size and the calculation of several postcranial indexes. We also performed a Factorial Discriminant Analysis (FDA) in order to evaluate locomotory behaviour and body shape of the taxa. Using allometric models based on skull and tooth measurements, we calculated a body weight between 173 and 284 g for H. morpheus, and direct measurements of articulated skeletons yielded a Head and Body Length (HBL) of 179 mm and a Total Body Length of 295 mm for this species. In addition to the generally higher robustness of postcranial bones already recorded by previous authors, H. morpheus, similar to Canariomys tamarani, another extinct island species, displayed elongated zygopodium bones of the limbs and a wider distal humerus and femur than in an extant related taxon, Eliomys quercinus. Indexes indicated that Hypnomys was more terrestrial and had greater fossorial abilities than E. quercinus. This was also corroborated by a Discriminant Analysis, although no clear additional inference of locomotory abilities could be calculated

    Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena ( Crocuta crocuta )

    Full text link
    Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas ( Crocuta crocuta ) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual “role-reversed” pattern of female dominance over males in this species. J. Morphol. 2010. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65047/1/10802_ftp.pd

    Ground Reaction Forces: The Sine Qua Non of Legged Locomotion

    Get PDF
    Legged locomotion results from the feet pressing against the ground to generate ground reaction forces (GRFs) that are responsible for moving the body. By changing limb coordination patterns and muscle forces, the GRFs are adjusted to allow the horse to move in different gaits, speeds, and directions with appropriate balance and self-carriage. This article describes the typical GRF patterns in each gait, the adaptations that produce turning, and the GRF patterns used to unload the painful limb when the horse is lame. The intent is to provide information that is of practical interest and value to equine scientists rather than being a comprehensive review of the topic. [Abstract copyright: Copyright © 2019 Elsevier Inc. All rights reserved.

    Musculoskeletal mass and shape are correlated with competitive ability in male house mice (Mus musculus)

    Get PDF
    Intense physical competition between males for mating opportunities is widespread among mammals. In such agonistic encounters, males with combinations of morphological, physiological, and behavioral characters that allow them to dominate an opponent have greater fitness. However, the specific physical traits associated with competitive ability are poorly understood. Larger body size is often correlated with fitness in mammals. Interestingly, fitness is maximized at intermediate body masses in male house mice (Mus musculus), a species with a polygynous mating system in which males compete physically for access to reproductive resources. Here, we used competition trials in semi-natural, mixed-sex population enclosures to directly measure competitive ability in male house mice based on control of a preferred nesting site. We tested the hypothesis that the musculoskeletal systems of male mice demonstrating high competitive ability are more specialized for competition by comparing the masses of 10 major muscle groups and eight bones as well as a set of 12 skeletal shape indices associated with anatomical specialization for fighting performance in a set of nine winners and 20 losers. Winning males possessed several traits hypothesized to enhance performance in male-male contests: relatively greater mass in several muscle groups and bones of the fore- and hindlimb and larger scapular surface area. Unexpectedly, no measurements of the head and neck differed significantly between winners and losers. These results identify musculoskeletal traits associated with competitive ability in male house mice and suggest that our current understanding of mammalian fighting performance is incomplete and more nuanced than previously considered
    corecore