162 research outputs found

    Simulation study of cryogenic air separation unit using Aspen Hysys at Rourkela steel plant

    Get PDF
    It’s been a few days now, requirement of Nitrogen, Oxygen and Argon increases day by day. Especially for a steel industry this three components are very essential for their steel production like decarburization, desulphurization, hydrogen removal, nitrogenation, argon, oxygen removal, metal cutting, welding, and cooling etc. Cryogenic air separation has the best impact to separate the air. Study and analyses of practical plant performance through computer aided programs has better and cost effective. Aspen Hysys by Aspen Technology is one of the major process simulators that are widely used in cryogenic, chemical and thermodynamic process industries today. In this work, the simulation study of cryogenic air separation unit (Rourkela steel plant, Odisha) is performed by using Aspen Hysys. The simulation study is based on both steady state and dynamic (high pressure column and low pressure column). The dynamic air separation unit has been designed based on PI controller. The plant efficiency, specific power consumption, product purity and behaviour of process parameter with respect to time and feed disturbance have been discussed

    Amine–Borane Dehydropolymerization : Challenges and Opportunities

    Get PDF
    The dehydropolymerization of amine–boranes, exemplified as H2RB⋅NR′H2, to produce polyaminoboranes (HRBNR′H)n that are inorganic analogues of polyolefins with alternating main-chain B−N units, is an area with significant potential, stemming from both fundamental (mechanism, catalyst development, main-group hetero-cross-coupling) and technological (new polymeric materials) opportunities. This Concept article outlines recent advances in the field, covering catalyst development and performance, current mechanistic models, and alternative non-catalytic routes for polymer production. The substrate scope, polymer properties and applications of these exciting materials are also outlined. Challenges and opportunities in the field are suggested, as a way of providing focus for future investigations

    Imprecise probabilistic estimation of design floods with epistemic uncertainties

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.An imprecise probabilistic framework for design flood estimation is proposed on the basis of the Dempster-Shafer theory to handle different epistemic uncertainties from data, probability distribution functions and probability distribution parameters. These uncertainties are incorporated in cost-benefit analysis to generate the lower and upper bounds of the total cost for flood control, thus presenting improved information for decision making on design floods. Within the total cost bounds, a new robustness criterion is proposed to select a design flood that can tolerate higher levels of uncertainty. A variance decomposition approach is used to quantify individual and interactive impacts of the uncertainty sources on total cost. Results from three case studies, with 127-, 104- and 54-year flood data sets respectively, show that the imprecise probabilistic approach effectively combines aleatory and epistemic uncertainties from the various sources and provides upper and lower bounds of the total cost. Between the total cost and the robustness of design floods, a clear trade-off which is beyond the information that can be provided by the conventional minimum cost criterion is identified. The interactions among data, distributions and parameters have a much higher contribution than parameters to the estimate of the total cost. It is found that the contributions of the various uncertainty sources and their interactions vary with different flood magnitude, but remain roughly the same with different return periods. This study demonstrates that the proposed methodology can effectively incorporate epistemic uncertainties in cost-benefit analysis of design floods.This study was supported by the National Natural Science Foundation of China (Grant No. 51320105010 and 51279021). The first author gratefully acknowledges the financial support provided by the China Scholarship Council. The authors are deeply indebted to editors, Dr Francesco Serinaldi and another anonymous reviewer for their valuable time and constructive suggestions that greatly improved the quality of this paper. The data of Three Gorges were obtained from the China Three Gorges Corporation. The data of Biliu were obtained from the Biliu reservoir administration. The data of Harbin were obtained from the Harbin hydrology bureau. These data are available as in Supporting Information Data Set which includes Data Set S1, Data Set S2 and Data Set S3. Data Set S1 corresponds to Three Gorges; Data Set S2 corresponds to Biliu; Data Set S3 corresponds to Harbin

    The role of neutral Rh(PONOP)H, free NMe2H, boronium and ammonium salts in the dehydrocoupling of dimethylamine-borane using the cationic pincer [Rh(PONOP)(η2-H2)]+ catalyst

    Get PDF
    The σ-amine-borane pincer complex [Rh(PONOP)(η1-H3B·NMe3)][BArF4] [2, PONOP = κ3-NC5H3-2,6-(OPtBu2)2] is prepared by addition of H3B·NMe3 to the dihydrogen precursor [Rh(PONOP)(η2-H2)][BArF4], 1. In a similar way the related H3B·NMe2H complex [Rh(PONOP)(η1-H3B·NMe2H)][BArF4], 3, can be made in situ, but this undergoes dehydrocoupling to reform 1 and give the aminoborane dimer [H2BNMe2]2. NMR studies on this system reveal an intermediate neutral hydride forms, Rh(PONOP)H, 4, that has been prepared independently. 1 is a competent catalyst (2 mol%, ∼30 min) for the dehydrocoupling of H3B·Me2H. Kinetic, mechanistic and computational studies point to the role of NMe2H in both forming the neutral hydride, via deprotonation of a σ-amine-borane complex and formation of aminoborane, and closing the catalytic cycle by reprotonation of the hydride by the thus-formed dimethyl ammonium [NMe2H2]+. Competitive processes involving the generation of boronium [H2B(NMe2H)2]+ are also discussed, but shown to be higher in energy. Off-cycle adducts between [NMe2H2]+ or [H2B(NMe2H)2]+ and amine-boranes are also discussed that act to modify the kinetics of dehydrocoupling

    Low-coordinate first-row transition metal complexes in catalysis and small molecule activation

    Get PDF
    Enforcing unusually low coordination numbers on transition metals with sterically demanding ligands has long been an area of interest for chemists. Historically, the synthesis of these challenging molecules has helped to elucidate fundamental principles of bonding and reactivity. More recently, there has been a move towards exploiting these highly reactive complexes to achieve a range of transformations using cheap, earth-abundant metals. In this Perspective, we will highlight selected examples of transition metal complexes with low coordination numbers that have been used in catalysis and the activation of small molecules featuring strong bonds (N2, CO2, and CO)

    Dehydrocoupling of dimethylamine-borane promoted by manganese(II) m-terphenyl complexes

    Get PDF
    Two- and three-coordinate manganese m-terphenyl complexes are precatalysts for the dehydrogenation of dimethylamine-borane (Me2NH·BH3) affording one equivalent of molecular hydrogen and half an equivalent of [Me2N–BH2]2. Experimental studies into the nature of the catalyst indicate that small changes in the coordination environment give rise to significant differences in the reaction mechanism, occurring through a homogeneous mechanism for two-coordinate precatalysts, whilst for the three-coordinate species a heterogeneous mechanism takes place where nanoparticles are responsible for the catalysis
    corecore