539 research outputs found
Production of Low-Carbon Magnetic Steel for the LHC Superconducting Dipole and Quadrupole Magnets
In 1996 CERN negotiated a contract with Cockerill Sambre â ARCELOR Group for the supply of 50 000 tonnes of low-carbon steel for the LHC main magnets: this was the first contract to be placed for the project, and one of the single largest. In 2005 â after nine years of work â the contract is being successfully completed. This paper describes the steel specifically developed, known as MAGNETILâ¢, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to physical, mechanical and technological parameters. Specific attention is dedicated to magnetic measurements (coercivity and permeability) performed at both room and cryogenic temperatures, the equipment used and statistical results. Reference is also made to the resulting precision of the fineblanked laminations used for the magnet yoke. The technology transfer from the particle accelerator domain to industry is ongoing, for example for the screening of high voltage cables buried in the ground
Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole
C. Santoni, coll. Atlas, to be published in the proceeding of the conferenceIn order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found that in one over the three Cold Mass Assemblers the driving mechanism of the magnetic field harmonics b2 and a3 is the collar shape
The Interconnections of the LHC Cryomagnets at CERN: Strategy Applied and First Results of the Industrialization Process
The final interconnections of the LHC superconducting magnets in the underground tunnel are performed by a contractor on a result-oriented basis. A consortium of firms was awarded the contract after competitive tendering based on a technical and commercial specification. The implementation of the specific technologies and tooling developed and qualified by CERN has required an important effort to transfer the know-how and implement the follow-up of the contractor. This paper summarizes the start-up phase and the difficulties encountered. The organization and management tools put in place during the ramping-up phase are presented. In addition to contractual adaptations of the workforce, several configuration changes to the workflows were necessary to reach production rates compatible with the overall schedule and with the different constraints: availability of magnets, co-activities with magnets transport and alignment, handling of non-conformities, etc. Also the QA procedures underwent many changes to reach the high level of quality mandatory to ensure the LHC performance. The specificities of this worksite are underlined and first figures of merit of the learning process are presented
A Correlation Study between Geometry of Collared Coils and Normal Quadrupole Multipole in the Main LHC Dipoles
The quality control implemented at all LHC dipole assemblers includes precise mechanical measurements of the geometry of collared coils. A cross-analysis performed between mechanical and magnetic measurements data shows a correlation between collared coils outer dimensions and the normal quadrupole multipole (b2) for one dipole assembler. The profile geometry of the single collars - as determined from 3D measurements at the collar suppliers and CERN - could not account alone for the significant left â right aperture asymmetry observed. This triggered a deeper investigation on different elements of the geometry of single collars. The results of this work show that the relative positioning of the collaring holes, allowing a small bending deformation of collars under the effect of coil pre-stress, is an important effect that generates a b2 multipole at the limit of specification. The study has deepened the understanding of the factors affecting collared coil geometry and field quality. The precision of 3D measurements at the collar suppliers and at CERN has been improved, and a tighter quality control has been introduced at the collar suppliers
The Quality Control of the LHC Continuous Cryostat Interconnections
The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km arc sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. This paper presents an overview of the quality control techniques used, seeking lessons applicable to similar large, complex projects
The LHC Continuous Cryostat Interconnections: The Organization of a Logistically Complex Worksite Requiring Strict Quality Standards and High Output
The interconnections of the Large Hadron Collider (LHC) continuous cryostat have been completed in fall 2007: 1695 interconnections magnet to magnet and 224 interconnections between the continuous cryostat and the cryogenic distribution line have been executed along the 27 km of the LHC. The very tight schedule, the complexity of the interconnection sequence, the strict quality standards applied have required the creation of an ad hoc organization in order to steer and coordinate the activities on the worksite dispersed along the whole accelerator ring. The concatenation of construction and test phases carried out by CERN staff, CERN collaborating institutes and contractors have led to the necessity of a common approach and of a very effective information flow. In this paper, after having recalled the main technical challenges, we review the organizational choices that have been taken and we briefly analyze the development of the worksite in term of allocated resources and production
The Special LHC Interconnections: Technologies, Organization and Quality Control
In addition to the standard interconnections (IC) of the continuous cryostat of the Large Hadron Collider (LHC), there exists a variety of special ones related to specific components and assemblies, such as cryomagnets of the insertion regions, electrical feedboxes and superconducting links. Though they are less numerous, their specificities created many additional IC types, requiring a larger variety of assembly operations and quality control techniques, keeping very high standards of quality. Considerable flexibility and adaptability from all the teams involved (CERN staff, collaborating institutes, contractors) were the key points to ensure the success of this task. This paper first describes the special IC and presents the employed technologies which are generally adapted from the standard work. Then, the organization adopted for this non-repetitive work is described. Examples of non-conformities that were resolved are also discussed. Figures of merit in terms of quality and productivity are given and compared with standard IC wor
Mechanical Design Aspects of The LHC Beam screen
Forty-four kilometers of the LHC beam vacuum system [1,2] will be equipped with a perforated co-axial liner, the so-called beam screen. Operating between 5 K and 20 K, the beam screen reduces heat loads to the 1.9 K helium bath of the superconducting magnets and minimises dynamic vacuum effects. Constructed from low magnetic permeability stainless steel with a 50 mm inner layer of high purity copper, the beam screen must provide a maximum aperture for the beam whilst resisting the induced forces due to eddy currents at magnet quench. The mechanical engineering challenges are numerous, and include stringent requirements on geometry, material selection, manufacturing techniques and cleanliness. The industrial fabrication of these 16 metre long UHV components is now in its prototyping phase. A description of the beam screen is given, together with details of the experimental programme aimed at validating the design choices, and results of the first industrial prototypes
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC
We present a measurement of two-particle angular correlations in proton- proton collisions at s√=900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T > 100 MeV and pseudorapidity |η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models
- …
