784 research outputs found

    Dissecting an intermediate-mass (IM) protostar: Chemical differentiation in IC1396N

    Full text link
    We have carried out high-angular resolution (1.4") observations in the continuum at 3.1mm and in the N2H+ 1-0, CH3CN 5_k-4_k and 13CS 2-1 lines using the Plateau de Bure Interferometer (PdBI) towards the intermediate mass (IM) protostar IRAS21391+5802 (IC1396N). In addition, we have merged the PdBI images with previous BIMA (continuum data at 1.2mm and 3.1mm) and single-dish (N2H+ 1-0) data to have a comprehensive description of the region. The combination of our data with BIMA and 30m data show that the bipolar outflow associated has completely eroded the initial molecular globule. The 1.2mm and 3.1mm continuum emissions are extended along the outflow axis tracing the warm walls of the biconical cavity. Most of the molecular gas, however, is located in an elongated feature in the direction perpendicular to the outflow. A strong chemical differentiation is detected across the molecular toroid, with the N2H+ 1-0 emission absent in the inner region.This chemical differentiation can be understood in terms of the different gas kinetic temperature. The [CH3CN]/[N2H+] ratio increases by 5 orders of magnitude with gas temperature, for temperatures between 20K and 100K. The CH3CN abundance towards IRAM 2A, the most massive protostellar core, is similar to that found in hot corinos and lower than that expected towards IM and high mass hot cores. This could indicate that IRAM 2A is a low mass or at most Herbig Ae star (IRAM 2A) instead of the precursor of a massive Be star. Alternatively, the low CH3CN abundance could also be the consequence of IRAM 2A being a Class 0/I transition object which has already formed a small photodissociation region (PDR).Comment: accepted A&

    Measuring the evolution of contemporary western popular music

    Get PDF
    Popular music is a key cultural expression that has captured listeners' attention for ages. Many of the structural regularities underlying musical discourse are yet to be discovered and, accordingly, their historical evolution remains formally unknown. Here we unveil a number of patterns and metrics characterizing the generic usage of primary musical facets such as pitch, timbre, and loudness in contemporary western popular music. Many of these patterns and metrics have been consistently stable for a period of more than fifty years, thus pointing towards a great degree of conventionalism. Nonetheless, we prove important changes or trends related to the restriction of pitch transitions, the homogenization of the timbral palette, and the growing loudness levels. This suggests that our perception of the new would be rooted on these changing characteristics. Hence, an old tune could perfectly sound novel and fashionable, provided that it consisted of common harmonic progressions, changed the instrumentation, and increased the average loudness.Comment: Supplementary materials not included. Please see the journal reference or contact the author

    Valorization of brewer’s spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation

    Get PDF
    This work is focused on the development of a sustainable process for the valorisation of the main by-product generated in the brewing industry, the brewer’s spent grain (BSG). A two-step process combining subcritical water treatment and pervaporation (PV) was proposed to hydrolyse the hemicelluloses fraction of this lignocellulosic biomass and further removal/recovery of some of the degradation products of sugars by using two different organophilic membranes, polydimethylsiloxane (PDMS) and polyoctilmethylsiloxane (POMS) membranes. Specifically, furfural is the dehydration product of pentoses and it is one of the top biomass-based chemicals being an important platform chemical. For synthetic binary mixtures, lower total permeation flux but higher enrichment factors for furfural were determined for POMS. When dealing with subW hydrolysates, POMS membranes yielded the highest furfural recovery, 94.1 %, with permeate concentrations as high as 40 g⋅L1 . Furthermore, it was assessed that PV is a suitable detoxification method that yielded a retentate nearly free of furfural allowing its use as growth media in the opposite to the subW hydrolysate with inhibitory furfural concentrations for microbial bioprocesses.publishe

    Excitation Spectrum and Superexchange Pathways in the Spin Dimer VODPO_4 . 1/2 D_2O

    Full text link
    Magnetic excitations have been investigated in the spin dimer material VODPO_4 \cdot 1/2 D_2O using inelastic neutron scattering. A dispersionless magnetic mode was observed at an energy of 7.81(4) meV. The wavevector dependence of the scattering intensityfrom this mode is consistent with the excitation of isolated V^{4+} spin dimers with a V-V separation of 4.43(7) \AA. This result is unexpected since the V-V pair previously thought to constitute themagnetic dimer has a separation of 3.09 \AA. We identify an alternative V-V pair as the likely magnetic dimer, which involves superexchange pathways through a covalently bonded PO_4 group. This surprising result casts doubt on the interpretation of (VO)_2P_2O_7 as a spin ladder.Comment: 4 pages, 4 postscript figures - identical to previous paper but figure 2 and 3 hopefully more compatible .p

    Chirality in Bare and Passivated Gold Nanoclusters

    Get PDF
    Chiral structures have been found as the lowest-energy isomers of bare (Au28_{28} and Au55)andthiolpassivated(Au_{55}) and thiol-passivated (Au_{28}(SCH3)_{3})_{16}andAu and Au_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR

    Synthesis and Structure of Trinuclear W3S4 Clusters Bearing Aminophosphine Ligands and Their Reactivity toward Halides and Pseudohalides

    Get PDF
    The aminophosphine ligand (2-aminoethyl)- diphenylphosphine (edpp) has been coordinated to the W3(μ- S)(μ-S)3 cluster unit to afford trimetallic complex [W3S4Br3(edpp)3]+ (1+) in a one-step synthesis process with high yields. Related [W3S4X3(edpp)3]+ clusters (X = F−, Cl−, NCS−; 2+−4+) have been isolated by treating 1+ with the corresponding halide or pseudohalide salt. The structure of complexes 1+ to 4+ contains an incomplete W3S4 cubane-type cluster unit, and only one of the possible isomers is formed: the one with the phosphorus atoms trans to the capping sulfur and the amino groups trans to the bridging sulphurs. The remaining coordination position on each metal is occupied by X. Detailed studies using stopped-flow, 31P{1H} NMR, and ESI-MS have been carried out in order to understand the solution behavior and the kinetics of interconversion among species 1+, 2+, 3+, and 4+ in solution. Density functional theory (DFT) calculations have been also carried out on the reactions of cluster 1+ with the different anions. The whole set of experimental and theoretical data indicate that the actual mechanism of substitutions in these clusters is strongly dependent on the nature of the leaving and entering anions. The interaction between an entering F− and the amino group coordinated to the adjacent metal have also been found to be especially relevant to the kinetics of these reactions

    Near- and Far-Infrared Counterparts of Millimeter Dust Cores in the Vela Molecular Ridge Cloud D

    Full text link
    The aim of this paper is to identify the young protostellar counterparts associated to dust millimeter cores of the Vela Molecular Ridge Cloud D through new IR observations (H_2 narrow-band at 2.12 micron and N broad band at 10.4 micron) along with an investigation performed on the existing IR catalogues. The association of mm continuum emission with infrared sources from catalogues (IRAS, MSX, 2MASS), JHK data from the literature and new observations, has been established according to spatial coincidence, infrared colours and spectral energy distributions. Only 7 out of 29 resolved mm cores (and 16 out of the 26 unresolved ones) do not exhibit signposts of star formation activity. The other ones are clearly associated with: far-IR sources, H_2 jets or near-IR objects showing a high intrinsic colour excess. The distribution of the spectral indices pertaining to the associated sources is peaked at values typical of Class I objects, while three objects are signalled as candidates Class 0 sources. We remark the high detection rate (30%) of H_2 jets driven by sources located inside the mm-cores. They appear not driven by the most luminous objects in the field, but rather by less luminous objects in young clusters, testifying the co-existence of both low- and intermediate-mass star formation. The presented results reliably describe the young population of VMR-D. However, the statistical evaluation of activity vs inactivity of the investigated cores, even in good agreement with results found for other star forming regions, seems to reflect the limiting sensitivity of the available facilities rather than any property intrinsic to the mm-condensations.Comment: 38 pages. To be published to Astronomy & Astrophysic

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange

    Complex organic molecules in protostellar environments in the SKA era

    Get PDF
    Molecular complexity builds up at each step of the Sun-like star formation process, starting from simple molecules and ending up in large polyatomic species. Complex organic molecules (COMs; such as methyl formate, HCOOCH3_3, dymethyl ether, CH3_3OCH3_3, formamide, NH2_2CHO, or glycoaldehyde, HCOCH2_2OH) are formed in all the components of the star formation recipe (e.g. pre-stellar cores, hot-corinos, circumstellar disks, shocks induced by fast jets), due to ice grain mantle sublimation or sputtering as well as gas-phase reactions. Understanding in great detail the involved processes is likely the only way to predict the ultimate molecular complexity reached in the ISM, as the detection of large molecules is increasingly more difficult with the increase of the number of atoms constituting them. Thanks to the recent spectacular progress of astronomical observations, due to the Herschel (sub-mm and IR), IRAM and SMA (mm and sub-mm), and NRAO (cm) telescopes, an enormous activity is being developed in the field of Astrochemistry, extending from astronomical observatories to chemical laboratories. We are involved in several observational projects providing unbiased spectral surveys (in the 80-300 and 500-2000 GHz ranges) with unprecedented sensitivity of templates of dense cores and protostars. Forests of COM lines have been detected. In this chapter we will focus on the chemistry of both cold prestellar cores and hot shocked regions, (i) reviewing results and open questions provided by mm-FIR observations, and (ii) showing the need of carrying on the observations of COMs at lower frequencies, where SKA will operate. We will also emphasize the importance of analysing the spectra by the light of the experimental studies performed by our team, who is investigating the chemical effects induced by ionising radiation bombarding astrophysically relevant ices.Comment: 18 pages, 8 figure

    Olfactory function and viral recovery in COVID-19

    Get PDF
    Olfactory and taste disorders were reported in up to 30%-80% of COVID-19 patients. The purpose of our study was to objectively assess smell impairment in COVID-19 patients and to correlate olfactory function with viral recovery
    corecore