15 research outputs found
El Observatorio de Inteligencia y Desarrollo Territorial, herramienta para la innovación en procesos de planificación territorial en municipios de la provincia de Jujuy.
El municipio es considerado como un espacio donde sus habitantes comparten no sólo el territorio sino también los problemas y los recursos existentes. La institución municipal –como gobierno local- es el ámbito en el cual se toman decisiones sobre el territorio, que implican a sus habitantes.
En cuanto a los actores, estos pueden ser funcionarios, empleados y la comunidad (individual y organizada en ongs), todos aportan sus conocimientos y valores, pero tienen diferentes intereses y diferentes tiempos. Vinculada a las decisiones, encontramos que la forma en que se gestiona la información territorial, es determinante si se pretende apuntar hacia acciones con impacto positivo, y sustentables en lo ambiental y en el tiempo.
Este trabajo toma tres municipios: San Salvador de Jujuy, capital de la provincia localizada en los Valles Templados; San Pedro de Jujuy, principal municipio de la región de las Yungas y Tilcara en la Quebrada de Humahuaca.
El aporte de la Inteligencia Territorial, a través del observatorio OIDTe, permite analizar los modos de gestión de la información, especialmente mediante el uso de las tecnologías de la información y comunicación (pagina web municipal, equipamiento informático en las oficinas, estrategias de comunicación y vinculación con la población) y mediante la organización de las estructuras administrativas (organigrama) por las cuales circula la información municipal. Además, con la participación enriquecedora de equipos multidisciplinarios en las diferentes etapas. Se busca, a partir de un diagnóstico, generar estrategias para la introducción de innovaciones con los propios actores municipales, a partir de las situaciones y modos culturales propios de cada lugar, incorporando los marcos conceptuales de la Inteligencia Territorial. En este sentido el OIDTe al promover el entendimiento entre los actores, institucionales y la sociedad, facilita la coordinación de diferentes intereses propiciando la toma de decisiones por acuerdos. Asimismo, el método Portulano, puede orientar la introducción de innovaciones en la coordinación de la información cartográfica, para que las diferentes oficinas puedan complementar sus aportes y la comunicación hacia fuera de la institución. En la fase de diagnóstico, se aplicaron entrevistas a informantes claves, se realizó un workshop con técnicos de planta permanente y funcionarios de áreas que manejan información territorial, y de planificación. También por la importancia de la capacidad instalada de recursos humanos, se analizó el nivel de instrucción y la capacitación con que cuenta el personal de planta permanente de cada área.
Se observa que las acciones de planificación territorial en estos municipios están limitadas por la capacidad tecnológica y de recursos humanos, también por la vinculación con otros agentes decisores en el territorio. La información territorial se presenta fragmentada, solapada o faltante, la preocupación se centra en el registro de ingresos por rentas y de los egresos.The municipality is consideredas a space where its inhabitants share not only territory but also the problems and existing resources. The municipal institution - such as local government - is the area in which decisions are taken on the territory, involving its inhabitants. As for the actors, these may be officials, employees and the Community (individual and organized in NGOs), all contributing their knowledge and values, but have different interests and different times. Linked to the decisions, we find that the way in which the territorial information, are managed is crucial if it is to target actions with positive and sustainable impact on environmental issues and time.
This work takes three municipalities: San Salvador de Jujuy, capital of the province located in the temperate valleys; San Pedro de Jujuy, main town of the Tilcara in the Quebrada de Humahuaca and the Yungas region.
The contribution of the Territorial Intelligence is at Observatory OIDTE, analyzing themodes of information management, especially through the use of information technologies and communication (page municipal website, computer equipment in offices, linking with the population and communication strategies) and through the Organization of administrative structures (organization chart) which circulates the municipal information. In addition, involving multidisciplinary teams enriching at different stages.Is search based on a diagnosis, generating strategies for the introduction of innovations with the actors themselves municipal situations and cultural modes of each place, through the incorporation of the Territorial Intelligence, conceptual frameworks. In this sense Observatory OIDTe to promote understanding between the actors, institutional and society, facilitates the coordination of different interests promoting decision-making by agreements. The Portulano method, it can guide the introduction of innovations in the coordination of cartographic information, that different offices can complement their contributions and communication out of the institution. In the diagnostic phase, interviews were conducted with key informants, conducted a workshop with permanent plant technicians and area officials who manage land information and planning. Also by the importance of the installed capacity of human resources, the level of education and training available to the permanent staff of each area was analyzed.
It notes that the actions of planning in these municipalities are limited by the technological and human resources, also linking with other decision-makers in the territory. Territorial information is fragmented, overlapped or missing, concern focuses on the register of income by income and outflows.Facultad de Humanidades y Ciencias de la Educació
El Observatorio de Inteligencia y Desarrollo Territorial, herramienta para la innovación en procesos de planificación territorial en municipios de la provincia de Jujuy.
El municipio es considerado como un espacio donde sus habitantes comparten no sólo el territorio sino también los problemas y los recursos existentes. La institución municipal –como gobierno local- es el ámbito en el cual se toman decisiones sobre el territorio, que implican a sus habitantes.
En cuanto a los actores, estos pueden ser funcionarios, empleados y la comunidad (individual y organizada en ongs), todos aportan sus conocimientos y valores, pero tienen diferentes intereses y diferentes tiempos. Vinculada a las decisiones, encontramos que la forma en que se gestiona la información territorial, es determinante si se pretende apuntar hacia acciones con impacto positivo, y sustentables en lo ambiental y en el tiempo.
Este trabajo toma tres municipios: San Salvador de Jujuy, capital de la provincia localizada en los Valles Templados; San Pedro de Jujuy, principal municipio de la región de las Yungas y Tilcara en la Quebrada de Humahuaca.
El aporte de la Inteligencia Territorial, a través del observatorio OIDTe, permite analizar los modos de gestión de la información, especialmente mediante el uso de las tecnologías de la información y comunicación (pagina web municipal, equipamiento informático en las oficinas, estrategias de comunicación y vinculación con la población) y mediante la organización de las estructuras administrativas (organigrama) por las cuales circula la información municipal. Además, con la participación enriquecedora de equipos multidisciplinarios en las diferentes etapas. Se busca, a partir de un diagnóstico, generar estrategias para la introducción de innovaciones con los propios actores municipales, a partir de las situaciones y modos culturales propios de cada lugar, incorporando los marcos conceptuales de la Inteligencia Territorial. En este sentido el OIDTe al promover el entendimiento entre los actores, institucionales y la sociedad, facilita la coordinación de diferentes intereses propiciando la toma de decisiones por acuerdos. Asimismo, el método Portulano, puede orientar la introducción de innovaciones en la coordinación de la información cartográfica, para que las diferentes oficinas puedan complementar sus aportes y la comunicación hacia fuera de la institución. En la fase de diagnóstico, se aplicaron entrevistas a informantes claves, se realizó un workshop con técnicos de planta permanente y funcionarios de áreas que manejan información territorial, y de planificación. También por la importancia de la capacidad instalada de recursos humanos, se analizó el nivel de instrucción y la capacitación con que cuenta el personal de planta permanente de cada área.
Se observa que las acciones de planificación territorial en estos municipios están limitadas por la capacidad tecnológica y de recursos humanos, también por la vinculación con otros agentes decisores en el territorio. La información territorial se presenta fragmentada, solapada o faltante, la preocupación se centra en el registro de ingresos por rentas y de los egresos.The municipality is consideredas a space where its inhabitants share not only territory but also the problems and existing resources. The municipal institution - such as local government - is the area in which decisions are taken on the territory, involving its inhabitants. As for the actors, these may be officials, employees and the Community (individual and organized in NGOs), all contributing their knowledge and values, but have different interests and different times. Linked to the decisions, we find that the way in which the territorial information, are managed is crucial if it is to target actions with positive and sustainable impact on environmental issues and time.
This work takes three municipalities: San Salvador de Jujuy, capital of the province located in the temperate valleys; San Pedro de Jujuy, main town of the Tilcara in the Quebrada de Humahuaca and the Yungas region.
The contribution of the Territorial Intelligence is at Observatory OIDTE, analyzing themodes of information management, especially through the use of information technologies and communication (page municipal website, computer equipment in offices, linking with the population and communication strategies) and through the Organization of administrative structures (organization chart) which circulates the municipal information. In addition, involving multidisciplinary teams enriching at different stages.Is search based on a diagnosis, generating strategies for the introduction of innovations with the actors themselves municipal situations and cultural modes of each place, through the incorporation of the Territorial Intelligence, conceptual frameworks. In this sense Observatory OIDTe to promote understanding between the actors, institutional and society, facilitates the coordination of different interests promoting decision-making by agreements. The Portulano method, it can guide the introduction of innovations in the coordination of cartographic information, that different offices can complement their contributions and communication out of the institution. In the diagnostic phase, interviews were conducted with key informants, conducted a workshop with permanent plant technicians and area officials who manage land information and planning. Also by the importance of the installed capacity of human resources, the level of education and training available to the permanent staff of each area was analyzed.
It notes that the actions of planning in these municipalities are limited by the technological and human resources, also linking with other decision-makers in the territory. Territorial information is fragmented, overlapped or missing, concern focuses on the register of income by income and outflows.Facultad de Humanidades y Ciencias de la Educació
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
The observatory of intelligence and territorial development, tool for innovation in processes of territorial planning in municipalities of the province of Jujuy
El municipio es considerado como un espacio donde sus habitantes comparten no sólo el territorio sino también los problemas y los recursos existentes. La institución municipal -como gobierno local- es el ámbito en el cual se toman decisiones sobre el territorio, que implican a sus habitantes. En cuanto a los actores, estos pueden ser funcionarios, empleados y la comunidad (individual y organizada en ongs), todos aportan sus conocimientos y valores, pero tienen diferentes intereses y diferentes tiempos. Vinculada a las decisiones, encontramos que la forma en que se gestiona la información territorial, es determinante si se pretende apuntar hacia acciones con impacto positivo, y sustentables en lo ambiental y en el tiempo. Este trabajo toma tres municipios: San Salvador de Jujuy, capital de la provincia localizada en los Valles Templados; San Pedro de Jujuy, principal municipio de la región de las Yungas y Tilcara en la Quebrada de Humahuaca. El aporte de la Inteligencia Territorial, a través del observatorio OIDTe, permite analizar los modos de gestión de la información, especialmente mediante el uso de las tecnologías de la información y comunicación (pagina web municipal, equipamiento informático en las oficinas, estrategias de comunicación y vinculación con la población) y mediante la organización de las estructuras administrativas (organigrama) por las cuales circula la información municipal. Además, con la participación enriquecedora de equipos multidisciplinarios en las diferentes etapas. Se busca, a partir de un diagnóstico, generar estrategias para la introducción de innovaciones con los propios actores municipales, a partir de las situaciones y modos culturales propios de cada lugar, incorporando los marcos conceptuales de la Inteligencia Territorial. En este sentido el OIDTe al promover el entendimiento entre los actores, institucionales y la sociedad, facilita la coordinación de diferentes intereses propiciando la toma de decisiones por acuerdos. Asimismo, el método Portulano, puede orientar la introducción de innovaciones en la coordinación de la información cartográfica, para que las diferentes oficinas puedan complementar sus aportes y la comunicación hacia fuera de la institución. En la fase de diagnóstico, se aplicaron entrevistas a informantes claves, se realizó un workshop con técnicos de planta permanente y funcionarios de áreas que manejan información territorial, y de planificación. También por la importancia de la capacidad instalada de recursos humanos, se analizó el nivel de instrucción y la capacitación con que cuenta el personal de planta permanente de cada áreaThe municipality is consideredas a space where its inhabitants share not only territory but also the problems and existing resources. The municipal institution -such as local government- is the area in which decisions are taken on the territory, involving its inhabitants. As for the actors, these may be officials, employees and the Community (individual and organized in NGOs), all contributing their knowledge and values, but have different interests and different times. Linked to the decisions, we find that the way in which the territorial information, are managed is crucial if it is to target actions with positive and sustainable impact on environmental issues and time. This work takes three municipalities: San Salvador de Jujuy, capital of the province located in the temperate valleys; San Pedro de Jujuy, main town of the Tilcara in the Quebrada de Humahuaca and the Yungas region. The contribution of the Territorial Intelligence is at Observatory OIDTE, analyzing themodes of information management, especially through the use of information technologies and communication (page municipal website, computer equipment in offices, linking with the population and communication strategies) and through the Organization of administrative structures (organization chart) which circulates the municipal information. In addition, involving multidisciplinary teams enriching at different stages.Is search based on a diagnosis, generating strategies for the introduction of innovations with the actors themselves municipal situations and cultural modes of each place, through the incorporation of the Territorial Intelligence, conceptual frameworks. In this sense Observatory OIDTe to promote understanding between the actors, institutional and society, facilitates the coordination of different interests promoting decision-making by agreements. The Portulano method, it can guide the introduction of innovations in the coordination of cartographic information, that different offices can complement their contributions and communication out of the institution. In the diagnostic phase, interviews were conducted with key informants, conducted a workshop with permanent plant technicians and area officials who manage land information and planning. Also by the importance of the installed capacity of human resources, the level of education and training available to the permanent staff of each area was analyze
ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America
Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
ATLANTIC BIRD TRAITS
Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data