13 research outputs found

    Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

    Get PDF
    Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.</p

    Safety and Upper Respiratory Pharmacokinetics of the Hemagglutinin Stalk-Binding Antibody VIS410 Support Treatment and Prophylaxis Based on Population Modeling of Seasonal Influenza A Outbreaks

    Get PDF
    Background: Seasonal influenza is a major public health concern in vulnerable populations. Here we investigated the safety, tolerability, and pharmacokinetics of a broadly neutralizing monoclonal antibody (VIS410) against Influenza A in a Phase 1 clinical trial. Based on these results and preclinical data, we implemented a mathematical modeling approach to investigate whether VIS410 could be used prophylactically to lessen the burden of a seasonal influenza epidemic and to protect at-risk groups from associated complications. Methods: Using a single-ascending dose study (n = 41) at dose levels from 2 mg/kg–50 mg/kg we evaluated the safety as well as the serum and upper respiratory pharmacokinetics of a broadly-neutralizing antibody (VIS410) against influenza A (ClinicalTrials.gov identifier NCT02045472). Our primary endpoints were safety and tolerability of VIS410 compared to placebo. We developed an epidemic microsimulation model testing the ability of VIS410 to mitigate attack rates and severe disease in at risk-populations. Findings: VIS410 was found to be generally safe and well-tolerated at all dose levels, from 2–50 mg/kg. Overall, 27 of 41 subjects (65.9%) reported a total of 67 treatment emergent adverse events (TEAEs). TEAEs were reported by 20 of 30 subjects (66.7%) who received VIS410 and by 7 of 11 subjects (63.6%) who received placebo. 14 of 16 TEAEs related to study drug were considered mild (Grade 1) and 2 were moderate (Grade 2). Two subjects (1 subject who received 30 mg/kg VIS410 and 1 subject who received placebo) experienced serious AEs (Grade 3 or 4 TEAEs) that were not related to study drug. VIS410 exposure was approximately dose-proportional with a mean half-life of 12.9 days. Mean VIS410 Cmax levels in the upper respiratory tract were 20.0 and 25.3 μg/ml at the 30 mg/kg and 50 mg/kg doses, respectively, with corresponding serum Cmax levels of 980.5 and 1316 μg/mL. Using these pharmacokinetic data, a microsimulation model showed that median attack rate reductions ranged from 8.6% (interquartile range (IQR): 4.7%–11.0%) for 2% coverage to 22.6% (IQR: 12.7–30.0%) for 6% coverage. The overall benefits to the elderly, a vulnerable subgroup, are largest when VIS410 is distributed exclusively to elderly individuals, resulting in reductions in hospitalization rates between 11.4% (IQR: 8.2%–13.3%) for 2% coverage and 30.9% (IQR: 24.8%–35.1%) for 6% coverage among those more than 65 years of age. Interpretation: VIS410 was generally safe and well tolerated and had good relative exposure in both serum and upper respiratory tract, supporting its use as either a single-dose therapeutic or prophylactic for influenza A. Including VIS410 prophylaxis among the public health interventions for seasonal influenza has the potential to lower attack rates and substantially reduce hospitalizations in individuals over the age of 65. Funding: Visterra, Inc

    Public perspectives on exposure notification apps: A patient and citizen co-designed study

    No full text
    Canada deployed a digital exposure notification app (COVID Alert) as a strategy to support manual contact tracing. Our aims are to (1) assess the use, knowledge, and concerns of the COVID Alert app, (2) identify predictors of app downloads, and (3) develop strategies to promote social acceptability. A 36-item questionnaire was co-designed by 12 citizens and patients partnered with 16 academic researchers and was distributed in the province of Québec, Canada, from May 27 to 28 June 2021. Of 959 respondents, 43% had downloaded the app. Messaging from government sources constituted the largest influence on app download. Infrequent social contacts and perceived app inefficacy were the main reasons not to download the app. Cybersecurity, data confidentiality, loss of privacy, and geolocation were the most frequent concerns. Nearly half of the respondents inaccurately believed that the app used geolocation. Most respondents supported citizen involvement in app development. The identified predictors for app uptake included nine characteristics. In conclusion, this project highlights four key themes on how to promote the social acceptability of such tools: (1) improved communication and explanation of key app characteristics, (2) design features that incentivize adoption, (3) inclusive socio-technical features, and (4) upstream public partnership in development and deployment

    Hypoxia Up-regulates CD36 Expression and Function via Hypoxia-inducible Factor-1- and Phosphatidylinositol 3-Kinase-dependent Mechanisms*

    No full text
    Neovascular and degenerative diseases of the eye are leading causes of impaired vision and blindness in the world. Hypoxia or reduced oxygen tension is considered central to the pathogenesis of these disorders. Although the CD36 scavenger receptor features prominently in ocular homeostasis and pathology, little is known regarding its modulation by hypoxia. Herein we investigated the role and regulation of CD36 by hypoxia and by the major hypoxia effector, hypoxia-inducible factor (HIF)-1. In vivo, hypoxia markedly induced CD36 mRNA in corneal and retinal tissue. Subsequent experiments on human retinal pigment epithelial cells revealed that hypoxia time-dependently increased CD36 mRNA, protein, and surface expression; these responses were reliant upon reactive oxygen species production. As an important novel finding, we demonstrate that hypoxic stimulation of CD36 is mediated by HIF-1; HIF-1α down-regulation abolished CD36 induction by both hypoxia and cobalt chloride. Sequence analysis of the human CD36 promoter region revealed a functional HIF-1 binding site. A luciferase reporter construct containing this promoter fragment was activated by hypoxia, whereas mutation at the HIF-1 consensus site decreased promoter activation. Specific binding of HIF-1 to this putative site in hypoxic cells was detected by a chromatin immunoprecipitation assay. Interestingly, inhibition of the phosphatidylinositol 3-kinase pathway blocked the hypoxia-dependent induction of CD36 expression and promoter activity. Functional ramifications of CD36 hypoxic accumulation were evinced by CD36-dependent increases in scavenging and anti-angiogenic activities. Together, our findings indicate a novel mechanism by which hypoxia induces CD36 expression via activation of HIF-1 and the phosphatidylinositol 3-kinase pathway

    Mapping neurotransmitter systems to the structural and functional organization of the human neocortex.

    Get PDF
    Funder: Helmholts International BigBrain Analytics &amp; Learning LaboratoryNeurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.For the Cambridge authors (Coles, Fryer & Aigbirhio): This work was funded by an MRC PET Neuroscience programme grant (Training and Novel Probes Programme in PET Neurochemistry - MR/K02308X/1) and by an MRC Developmental Pathway Funding Scheme grant (MR/L013215/1). This research in Cambridge was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. JPC was supported by a British Journal of Anaesthesia/Royal College of Anaesthetists grant from the National Institute of Academic Anaesthesia

    Drug Therapy in Hypoxic-Ischemic Cerebral Insults and Intraventricular Hemorrhage of the Newborn

    No full text
    corecore