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Neurotransmitter receptors support the propagation of signals in the human 
brain. How receptor systems are situated within macro-scale neuroanatomy 
and how they shape emergent function remain poorly understood, and 
there exists no comprehensive atlas of receptors. Here we collate positron 
emission tomography data from more than 1,200 healthy individuals to 
construct a whole-brain three-dimensional normative atlas of 19 receptors 
and transporters across nine different neurotransmitter systems. We found 
that receptor profiles align with structural connectivity and mediate function, 
including neurophysiological oscillatory dynamics and resting-state 
hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, 
we uncovered a topographic gradient of overlapping receptor distributions 
that separates extrinsic and intrinsic psychological processes. Finally, we 
found both expected and novel associations between receptor distributions 
and cortical abnormality patterns across 13 disorders. We replicated all 
findings in an independently collected autoradiography dataset. This work 
demonstrates how chemoarchitecture shapes brain structure and function, 
providing a new direction for studying multi-scale brain organization.

Neurotransmitter receptors are heterogeneously distributed across 
the neocortex and respond to the binding of a neurotransmitter. By 
modulating the excitability and firing rate of the cell, neurotransmit-
ter receptors effectively mediate the transfer and propagation of 

electrical impulses. As such, neurotransmitter receptors drive synap-
tic plasticity, modify neural states and ultimately shape network-wide 
communication1. These receptors are diverse in their structure and 
function: receptors may be ionotropic or metabotropic, may be 

Received: 1 November 2021

Accepted: 20 September 2022

Published online: 27 October 2022

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: bratislav.misic@mcgill.ca

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-022-01186-3
http://orcid.org/0000-0003-3142-7480
http://orcid.org/0000-0002-2036-5571
http://orcid.org/0000-0003-1057-1336
http://orcid.org/0000-0002-4775-6943
http://orcid.org/0000-0003-2131-5688
http://orcid.org/0000-0001-7805-279X
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0003-0585-7524
http://orcid.org/0000-0003-1530-8916
http://orcid.org/0000-0003-4013-679X
http://orcid.org/0000-0001-9530-4848
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0002-1582-725X
http://orcid.org/0000-0002-3179-6780
http://orcid.org/0000-0002-1243-2252
http://orcid.org/0000-0001-9116-1376
http://orcid.org/0000-0002-9120-8098
http://orcid.org/0000-0003-1508-6866
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0002-9338-7966
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0003-0307-2862
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-022-01186-3&domain=pdf
mailto:bratislav.misic@mcgill.ca


Nature Neuroscience | Volume 25 | November 2022 | 1569–1581  1570

Resource https://doi.org/10.1038/s41593-022-01186-3

available at https://github.com/netneurolab/hansen_receptors. We use 
multiple imaging modalities to comprehensively situate cortical neu-
rotransmitter receptor densities within micro-scale and macro-scale 
neural architectures. Using diffusion-weighted magnetic resonance 
imaging (MRI) and functional MRI, we show that neurotransmitter 
receptor densities follow the organizational principles of the brain’s 
structural and functional connectomes. Moreover, we found that 
neurotransmitter receptor densities shape magnetoencephalogra-
phy (MEG)-derived oscillatory neural dynamics. To determine how 
neurotransmitter receptor distributions affect cognition and disease, 
we mapped receptor densities to meta-analytic (Neurosynth-derived) 
functional activations, where we uncovered a spatially co-varying axis 
of neuromodulators and mood-related processes. Next, we linked 
receptor distributions to ENIGMA-derived patterns of cortical atrophy 
across 13 neurological, psychiatric and neurodevelopmental disorders, 
uncovering specific receptor–disorder links. We validated our findings 
and extended the scope of the investigation to additional receptors 
using an independently collected autoradiography neurotransmit-
ter receptor dataset6. Altogether, we demonstrate that, across spatial 
and temporal scales, chemoarchitecture consistently plays a key role 
in brain function.

Results
A comprehensive cortical profile of neurotransmitter receptor densi-
ties was constructed by collating PET images from a total of 19 different 
neurotransmitter receptors, transporters and receptor-binding sites 
across nine different neurotransmitter systems, including dopamine, 
norepinephrine, serotonin, acetylcholine, glutamate, GABA, hista-
mine, cannabinoid and opioid (Fig. 1). All PET images were acquired 
in healthy participants (see Table 1 for a complete list of receptors and 
transporters, corresponding PET tracers, ages and number of partici-
pants). A group-average tracer map was constructed across partici-
pants within each study. To mitigate variation in image acquisition and 
pre-processing, and to ease biological interpretability, all PET tracer 
maps were parcellated into the same 100 cortical regions and z-scored12. 
Note that, although the data include both cortical and subcortical data, 
we restricted our analyses to the cortex. In total, we present tracer maps 

composed of multiple subunits, may exert facilitatory or inhibitory 
influence on the circuit and are coupled to different downstream 
biochemical pathways.

How spatial distributions of different neurotransmitter recep-
tors relate to brain structure and shape brain function at the system 
level remains unknown. Recent technological advances allow for 
high-resolution reconstructions of the brain’s wiring patterns. These 
wiring patterns display non-trivial architectural features, including spe-
cialized network modules that support the segregation of information2 
as well as densely interconnected hub regions that support the integra-
tion of information3. The spatial arrangement of neurotransmitter 
receptors on this network presumably guides the flow of information 
and the emergence of cognitive function. Therefore, understanding the 
link between structure and function is inherently incomplete without 
a comprehensive map of the chemoarchitecture of the brain4,5.

A primary obstacle to studying the relative density distributions 
of receptors across multiple neurotransmitter systems is the lack 
of comprehensive openly accessible datasets. An important excep-
tion is the autoradiography dataset of 15 neurotransmitter receptors 
and receptor-binding sites, collected in three postmortem brains4,6. 
However, these autoradiographs are available in only 44 cytoarchi-
tectonically defined cortical areas. Alternatively, positron emission 
tomography (PET) can estimate in vivo receptor concentrations across 
the whole brain. Despite the relative ease of mapping receptor densi-
ties using PET, there are, nonetheless, difficulties in constructing a 
comprehensive PET dataset of neurotransmitter receptors. Due to 
the radioactivity of the injected PET tracer, mapping multiple differ-
ent receptors in the same individual is not considered a safe practice. 
Combined with the fact that PET image acquisition is relatively expen-
sive, cohorts of control subjects are small and typically include only 
one or two tracers. Therefore, constructing a comprehensive atlas of 
neurotransmitter receptor densities across the brain requires extensive 
data-sharing efforts from multiple research groups7–11.

Here we curate and share an atlas of PET-derived whole-brain 
neurotransmitter receptor maps from 19 unique neurotransmitter 
receptors, receptor-binding sites and transporters, across nine differ-
ent neurotransmitter systems and more than 1,200 healthy individuals, 
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Fig. 1 | PET images of neurotransmitter receptors and transporters. PET tracer images were collated and averaged to produce mean receptor distribution maps 
of 19 different neurotransmitter receptors and transporters across nine different neurotransmitter systems and a combined total of more than 1,200 healthy 
participants.

http://www.nature.com/natureneuroscience
https://github.com/netneurolab/hansen_receptors


Nature Neuroscience | Volume 25 | November 2022 | 1569–1581  1571

Resource https://doi.org/10.1038/s41593-022-01186-3

for 19 unique neurotransmitter receptors and transporters from a com-
bined total of 1,238 healthy participants, resulting in a 100 × 19 matrix 
of relative neurotransmitter receptor/transporter densities. Finally, 
we repeated all analyses in an independently collected autoradiogra-
phy dataset of 15 neurotransmitter receptors (Supplementary Table 1  
(ref. 6)) and across alternative brain parcellations12.

Receptor distributions reflect structural and functional 
organization
To quantify the potential for two brain regions to be similarly modu-
lated by endogenous or exogenous input, we computed the corre-
lation of receptor/transporter fingerprints between pairs of brain 
regions (Fig. 2a). Hereafter, we refer to this quantity as ‘receptor simi-
larity’, analogous to other commonly used measures of inter-regional 
attribute similarity, including anatomical covariance13, morphomet-
ric similarity14, gene coexpression15, temporal profile similarity16 and 
microstructural similarity17. Receptor similarity is approximately 
normally distributed (Fig. 2b) and decreases exponentially with 
Euclidean distance, supporting the notion that proximal neural ele-
ments share similar microarchitecture (Fig. 2c; refs. 18,19). We confirm 
that no single receptor or transporter exerts undue influence on 
the receptor similarity matrix (see the ‘Sensitivity and robustness 
analyses’ section).

Receptor similarity addresses the between-region similarity of 
receptor fingerprints. To complement this, we calculated the first prin-
cipal component of receptor density, which represents a regional quan-
tification of receptor similarity (Fig. 2d). This gradient separates insular 
and cingulate cortex from somatomotor and posterior parietal regions 
and resembles the macaque principal receptor expression gradient20. 
The first principal component differentiates laminar classes, support-
ing the notion that receptor expression strongly depends on lamination 
(Fig. 2e; one-way ANOVA F = 15.82, P = 1.95 × 10−8; ref. 21). Additionally, 
we found a significant correlation between the receptor gradient and 
synapse density, consistent with the finding that the macaque receptor 
gradient increases with the number of dendritic spines (Fig. 2f; Pear-
son’s r(98) = 0.44, Pspin = 0.0003, confidence interval (CI) = [0.26, 0.58], 
two-tailed)20. For completeness, we stratified receptors by biological 
mechanisms (excitatory/inhibitory, ionotropic/metabotropic and Gs-/
Gi-/Gq-coupled metabotropic pathways) and neurotransmitter protein 
structure (monoamine/non-monoamine) to provide additional insight 
about the underlying biological pathways (Fig. 2g).

Using group-consensus structural and resting-state functional 
connectomes from the Human Connectome Project (HCP), we show 
that neurotransmitter receptor organization reflects structural and 
functional connectivity. Specifically, we found that receptor simi-
larity is greater between pairs of brain regions that are structurally 
connected, suggesting that anatomically connected areas are likely 
to be co-modulated (Fig. 3a). To ensure that the observed relation-
ship between structural connections and receptor similarity is not 
due to spatial proximity or network topography, we assessed signifi-
cance against density-, degree- and edge length-preserving surrogate 
structural connectivity matrices (P = 0.0001, 10,000 repetitions22). 
Additionally, we found that receptor similarity is significantly corre-
lated with structural connectivity, after regressing Euclidean distance 
from both modalities (Pearson’s r(1134) = 0.16, P = 1.6 × 10−8, CI = [0.11, 
0.23], two-sided).

Likewise, receptor similarity is significantly greater between brain 
regions that are within the same intrinsic networks than between dif-
ferent intrinsic networks, according to the Yeo–Krienen seven-network 
classification (Pspin = 0.001, 10,000 repetitions; Fig. 3b (ref. 23)). This sug-
gests that areas that are in the same cognitive system tend to have simi-
lar receptor profiles4. Significance was assessed non-parametrically by 
permuting the intrinsic network affiliations while preserving spatial 
autocorrelation (‘spin test’; refs. 24,25). We also found that receptor 
similarity is significantly correlated with functional connectivity, 

after regressing Euclidean distance from both matrices (Pearson’s 
r(4948) = 0.23, P = 7.1 × 10−61, CI = [0.20, 0.26], two-sided). In other 
words, we observed that brain regions with similar receptor and trans-
porter composition show greater functional co-activation. Collectively, 
these results demonstrate that receptor profiles are systematically 
aligned with patterns of structural and functional connectivity above 
and beyond spatial proximity, consistent with the notion that receptor 
profiles guide inter-regional signaling.

Because neurotransmitter receptor and transporter distributions 
are organized according to structural and functional architectures, 
we next asked whether receptor/transporter distributions might aug-
ment the coupling between brain structure and function. To quantify 
structure–function coupling, we relied on the communicability of the 
weighted structural connectome (see results using alternative methods 
in Supplementary Fig. 1). Communicability represents a form of decen-
tralized diffusive communication on the structural connectome26 and 
has been previously shown to mediate the link between brain structure 
and function27. Structure–function coupling at every brain region is 
defined as the adjusted R2 of a simple linear regression model that fits 
regional communicability to regional functional connectivity. We then 
included regional receptor similarity as an independent variable, to 
assess how receptor information changes structure–function coupling. 
Significance was assessed against a null distribution of adjusted R2 from 
a model that adds a rotated regional receptor similarity vector (10,000 
repetitions, one-sided, false disovery rate (FDR)-corrected). Next, we 
cross-validated each regression model using a distance-dependent 
method that was previously developed in-house (Supplementary  
Fig. 2; see Methods for details28). We found that including receptor 
profiles as an input variable alongside brain structure significantly 
improves the prediction of regional functional connectivity in uni-
modal areas and the paracentral lobule (Fig. 3c).

Receptor profiles shape oscillatory neural dynamics
Given that neurotransmitter receptors modulate the firing rates of 
neurons and, therefore, population activity, we sought to relate the 
cortical patterning of neurotransmitter receptors to neural oscillations. 
We used MEG power spectra across six canonical frequency bands from 
the HCP29,30. We fit a multiple linear regression model that predicts the 
cortical power distribution of each frequency band from neurotrans-
mitter receptor and transporter densities. We then cross-validated the 
model using a distance-dependent method (Supplementary Fig. 3). In 
addition to the cross-validation, we assessed the significance of each 
model against a spin-permuted null model (10,000 repetitions) and 
found that all models except high-gamma are significant after FDR 
correction (Pspin < 0.05, one-sided). We found a close fit between recep-
tor densities and MEG-derived power (0.78 ≤ R2

adj ≤ 0.94 ; Fig. 4a), 
suggesting that overlapping spatial topographies of multiple neuro-
transmitter systems may ultimately manifest as coherent oscillatory 
patterns.

To identify independent variables (receptors/transporters) that 
contribute most to the fit, we applied dominance analysis, a tech-
nique that assigns a proportion of the final R2

adj to each independent 
variable to the statistically significant models31. Dominance was 
normalized by the total fit of the model (R2

adj), such that dominance 
is comparable across models (Fig. 4b). We found that, compared to 
other receptors, the spatial distribution of MOR (opioid), H3 (hista-
mine) and α4β2 make a large contribution to the fit between receptors 
and lower-frequency (theta and alpha) as well as low-gamma power 
bands32,33. Interestingly, we found a prominence of ionotropic recep-
tors when we replicated the analysis in the autoradiography dataset 
(see the ‘Replication using autoradiography’ section and Supplemen-
tary Fig. 4). Additionally, when we stratified dominance by receptor 
classes, we found that inhibitory, non-monoamine and Gi-coupled 
receptors are more dominant than excitatory, monoamine and Gs-/
Gq-coupled receptors, respectively (Supplementary Fig. 5a).
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Mapping receptors to cognitive function
Previously, we showed that receptor and transporter distributions 
follow the structural and functional organization of the brain and that 
receptors are closely linked to neural dynamics. In this and the next 
subsections, we investigate how the spatial distribution of neurotrans-
mitter receptors and transporters correspond to cognitive processes 
and disease vulnerability.

We used Neurosynth to derive 123 meta-analytic task activation 
maps, which represent the probability that specific brain regions are 
activated during multiple cognitive tasks34. We applied partial least 
squares (PLS) analysis to identify a multivariate mapping between neu-
rotransmitter receptors/transporters and functional activation maps.

PLS analysis extracted a significant latent variable relating recep-
tor/transporter densities to functional activation across the brain 
(Pspin = 0.010, one-tailed). The latent variable represents the dominant 
spatial pattern of receptor distributions (receptor weights) and func-
tional activations (cognitive weights) that together capture 54% of the 
covariance between the two datasets (Fig. 5a). Projecting the receptor 

density (functional activation) matrix back onto the receptor (cogni-
tive) weights reflects how well a brain area exhibits the receptor and 
cognitive weighted pattern, which we refer to as ‘receptor scores’ and 
‘cognitive scores’, respectively (Fig. 5b,c). The receptor and cognitive 
score patterns reveal a sensory-fugal spatial gradient, separating lim-
bic, paralimbic and insular cortices from visual and somatosensory 
cortices. We then cross-validated the correlation between receptor and 
cognitive scores using a distance-dependent method (Fig. 5d, mean 
out-of-sample Pearson’s r(98) = 0.54, Pspin = 0.046, one-sided). This 
result demonstrates a link between receptor distributions and cogni-
tive specialization that is perhaps mediated by laminar differentiation 
and synaptic hierarchies.

To identify the receptors and cognitive processes that contribute 
most to the spatial pattern in Fig. 5b,c, we correlated each variable 
with the score pattern (Fig. 5e–f; for all stable term loadings, see 
Supplementary Fig. 6). This results in a ‘loading’ for each receptor 
and cognitive process, where positively loaded receptors co-vary 
with positively loaded cognitive processes in positively scored brain 

Table 1 | Neurotransmitter receptors and transporters included in analyses. BPND, non-displaceable binding potential; 
VT, tracer distribution volume; Bmax, density (pmol ml−1) converted from binding potential (5-HT) or distributional volume 
(GABA) using autoradiography-derived densities; SUVR, standard uptake value ratio. Values in parentheses (under n) 
indicate the number of females. Neurotransmitter receptor maps without citations refer to previously unpublished 
data. In those cases, contact information for the study principal investigator (PI) is provided in Supplementary Table 3. 
Supplementary Table 3 also includes more extensive methodological details, such as PET camera, number of males and 
females, modeling method, reference region, scan length and modeling notes. Asterisks indicate transporters

Receptor/
transporter

Neurotransmitter Tracer Measure n Age References

D1 Dopamine [11C]SCH23390 BPND 13 (7) 33 ± 13 Kaller et al.58

D2 Dopamine [11C]FLB-457 BPND 37 (20) 48.4 ± 16.9 Smith et al.59,60

D2 Dopamine [11C]FLB-457 BPND 55 (29) 32.5 ± 9.7 Sandiego et al.59–63

DAT* Dopamine [123I]-FP-CIT SUVR 174 (65) 61 ± 11 Dukart et al.64

NET* Norepinephrine [11C]MRB BPND 77 (27) 33.4 ± 9.2 Ding et al.65–68

5-HT1A Serotonin [11C]WAY-100635 BPND 35 (17) 26.3 ± 5.2 Savli et al.69

5-HT1B Serotonin [11C]P943 BPND 65 (16) 33.7 ± 9.7 Gallezot et al.70–76

5-HT1B Serotonin [11C]P943 BPND 23 (8) 28.7 ± 7.0 Savli et al.69

5-HT2A Serotonin [11C]Cimbi-36 Bmax 29 (14) 22.6 ± 2.7 Beliveau et al.9

5-HT4 Serotonin [11C]SB207145 Bmax 59 (18) 25.9 ± 5.3 Beliveau et al.9

5-HT6 Serotonin [11C]GSK215083 BPND 30 (0) 36.6 ± 9.0 Radhakrishnan et al.77,78

5-HTT* Serotonin [11C]DASB Bmax 100 (71) 25.1 ± 5.8 Beliveau et al.9

α4β2 Acetylcholine [18F]Flubatine VT 30 (10) 33.5 ± 10.7 Hillmer et al.79,80

M1 Acetylcholine [11C]LSN3172176 BPND 24 (11) 40.5 ± 11.7 Naganawa et al.81

VAChT* Acetylcholine [18F]FEOBV SUVR 4 (1) 37 ± 10.2 PI: Tuominen, L. & Guimond, S.

VAChT* Acetylcholine [18F]FEOBV SUVR 18 (13) 66.8 ± 6.8 Aghourian et al.82

VAChT* Acetylcholine [18F]FEOBV SUVR 5 (1) 68.3 ± 3.1 Bedard et al.83

VAChT* Acetylcholine [18F]FEOBV SUVR 3 (3) 66.6 ± 0.94 PI: Schmitz, T. W. & Spreng, 
R. N.

NMDA Glutamate [18F]GE-179 VT 29 (8) 40.9 ± 12.7 Galovic et al.84–86

mGluR5 Glutamate [11C]ABP688 BPND 73 (48) 19.9 ± 3.04 Smart et al.52

mGluR5 Glutamate [11C]ABP688 BPND 22 (10) 67.9 ± 9.6 PI: Rosa-Neto, P. & Kobayashi, 
E.

mGluR5 Glutamate [11C]ABP688 BPND 28 (13) 33.1 ± 11.2 DuBois et al.87

GABAA/BZ GABA [11C]Flumazenil Bmax 16 (9) 26.6 ± 8 Nørgaard et al.8

H3 Histamine [11C]GSK189254 VT 8 (1) 31.7 ± 9.0 Gallezot et al.88

CB1 Cannabinoid [11C]OMAR VT 77 (28) 30.0 ± 8.9 Normandin et al.89–92

MOR Opioid [11C]Carfentanil BPND 204 (72) 32.3 ± 10.8 Kantonen et al.93
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regions and vice versa for negative loadings. Interestingly, we found 
that almost all receptors/transporters have positive loading, with 
metabotropic dopaminergic and serotonergic receptors having the 
greatest loadings (Fig. 5e and Supplementary Fig. 5b). The cognitive 
processes with large positive loadings are enriched for emotional 
and affective processes such as ‘emotion’, ‘fear’ and ‘valence’. This 
suggests that the combination of serotonergic and dopaminergic 
receptor distributions co-vary with mood-related functional activa-
tion in insular and limbic regions, consistent with the role of serotonin 
and dopamine neurotransmitter systems in mood processing and 
mood disorders35. On the other hand, we found that only NET has 
stable negative loading and that it spatially co-varies with functions 
such as ‘fixation’, ‘planning’ and ‘skill’ in primarily unimodal regions. 
This is consistent with the notion that norepinephrine systems are 
involved in integrative functions that require coordination across 
segregated brain regions1. Collectively, these results demonstrate 
a direct link between cortex-wide molecular receptor distributions 
and functional specialization.

Mapping receptors and transporters to disease vulnerability
Neurotransmitter receptors and transporters are implicated in multi-
ple diseases and disorders. Identifying the neurotransmitter receptors/
transporters that correspond to specific disorders is important for 
developing new therapeutic drugs. We, therefore, sought to relate 
neurotransmitter receptors and transporters to patterns of cortical 
abnormality across a range of neurological, developmental and psy-
chiatric disorders. We used datasets from the ENIGMA consortium for 
a total of 13 disorders, including 22q11.2 deletion syndrome, attention 
deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 
idiopathic generalized epilepsy (IGE), right and left temporal lobe 
epilepsy, depression, obsessive-compulsive disorder (OCD), schizo-
phrenia, bipolar disorder (BD), obesity, schizotypy and Parkinson’s 
disease (PD). We then fit a multiple regression model that predicts each 
disorder’s cortical abnormality pattern from receptor and transporter 
distributions (Fig. 6). We assessed the significance of each model fit 
against an FDR-corrected one-sided spatial autocorrelation-preserving 
null model and evaluated each model using distance-dependent 
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atlas. PET maps for 19 different neurotransmitter receptors and transporters were 
z-scored and collated into a single neurotransmitter receptor atlas. a, For each 
pair of brain regions, the receptor density profiles are correlated (Pearson’s r)  
to construct the receptor similarity matrix (ordered according to the Yeo–
Krienen intrinsic networks: frontoparietal, default mode, dorsal attention, 
limbic, ventral attention, somatomotor and visual23). b, Receptor similarity is 
approximately normally distributed. c, Receptor similarity decays exponentially 
with the Euclidean distance between centroid coordinates of brain regions. 
d, The first principal component of receptor density. e, The first principal 

gradient of receptor density stratified by classes of laminar differentiation 
reveals a gradient from idiotypic regions to paralimbic regions (one-way ANOVA 
F = 15.82, P = 1.95 × 10−8; PLMB, paralimbic; HET, heteromodal; UNI, unimodal; 
IDT, idiotypic)17. f, The principal receptor gradient is significantly correlated with 
synapse density (measured using the synaptic vesicle glycoprotein 2A-binding 
[11C]-UCBJ PET tracer; Pearson’s r(98) = 0.44, Pspin = 0.0003, CI = [0.26, 0.58], 
two-tailed). g, Pearson’s correlations between pairs of receptor/transporter 
distributions are shown stratified by excitatory versus inhibitory, monoamine 
versus non-monoamine, ionotropic versus metabotropic and Gs-coupled versus 
Gi-coupled versus Gq-coupled metabotropic receptors.
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cross-validation (Supplementary Fig. 7). Figure 6a shows how receptor 
distributions map onto cortical abnormaltiy patterns across multiple 
disorders. We found that some disorders are more heavily influenced 
by receptor distribution than others (0.23 < R2

adj < 0.77). IGE and schi-
zotypy show low and non-significant correspondence with receptor 
distributions, whereas ADHD, autism and temporal lobe epilepsies 
show greater correspondence with receptor distributions. The domi-
nance analysis in Fig. 6b shows the contribution of each input variable 
to the fit of the model, normalized by the total fit (adjusted R2). Inter-
estingly, we found that serotonin transporter (5-HTT) distributions 
contribute more to OCD, schizophrenia and BD profiles than any other 
receptors. Furthermore, the mu-opioid receptor is the strongest con-
tributor of ADHD cortical abnormalities, consistent with findings from 
animal models36. We also note that, in some cases, the analyses do not 
necessarily recover the expected relationships. For instance, in PD, the 
dopamine receptors are not implicated, likely because the analysis was 
restricted to cortex only. Additionally, serotonin receptors do not make 
large contributions to depression, possibly because changes in corti-
cal thickness do not directly measure the primary pathophysiology 
associated with some brain diseases. Although this analysis points to 
mappings between receptors and disorder profiles, we found no 

significant differential contribution of receptor classes to disorder 
profiles (Supplementary Fig. 5c). Our results present an initial step 
toward a comprehensive ‘look-up table’ that relates neurotransmitter 
systems to multiple brain disorders.

Replication using autoradiography
In the present report, we comprehensively situate neurotransmitter 
receptor and transporter densities within the brain’s structural and 
functional architecture. However, estimates for neurotransmitter 
receptor densities are acquired from PET imaging alone, and the way 
in which densities are quantified varies across radioligands, image 
acquisition protocols and pre-processing. Autoradiography is an 
alternative technique to measure receptor density and captures local 
densities at a defined number of postmortem brain sections. Due to 
the high cost and labor intensity of acquiring autoradiographs, there 
does not yet exist a complete autoradiography three-dimensional (3D) 
cross-cortex atlas of receptors.

Nonetheless, we repeated the analyses in an autoradiography 
dataset of 15 neurotransmitter receptors across 44 cytoarchitectoni-
cally defined cortical areas, from three postmortem brains6,37. This set 
of 15 neurotransmitter receptors consists of a diverse set of ionotropic 
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connectivity matrices (P = 0.0001, two-tailed Nconnected = 1,136 edges, 
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default mode, dorsal attention, limbic, ventral attention, somatomotor and 
visual)23. sc, structural connectivity.
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and metabotropic receptors, including excitatory glutamate, acetyl-
choline and norepinephrine receptors (see Supplementary Table 1 for 
a complete list of receptors). Notably, eight of the 15 receptors in the 
autoradiography dataset are not included in the PET dataset, which 
precludes direct comparisons between the two datasets. Receptor 
similarity is shown in Supplementary Fig. 8a. Despite the alternate set 
of neurotransmitter receptors, we found that autoradiography-derived 
receptor similarity is significantly correlated with PET-derived receptor 
similarity (Pearson’s r(1033) = 0.38, P = 6.7 × 10−38, CI = [0.33, 0.44]; Sup-
plementary Fig. 8a) and decays exponentially with Euclidean distance. 
Additionally, autoradiography-derived and PET-derived receptor gra-
dients are correlated (Pearson’s r(44) = 0.51, Pperm = 0.0001, CI = [0.26, 
0.70], two-sided). Next, we found that autoradiography-derived recep-
tor densities follow similar architectural patterns as the PET-derived 
receptor densities. Receptor similarity is non-significantly greater 
between structurally connected brain regions (P = 0.19) and signifi-
cantly correlated with structural connectivity (Pearson’s r(329) = 0.39, 
P = 1.4 × 10−13, CI = [0.30, 0.48]; Supplementary Fig. 8d). It is also signifi-
cantly greater in regions within the same intrinsic network (Pspin = 0.03) 
and is significantly correlated with functional connectivity (Pearson’s 
r(1033) = 0.21, P = 1.1 × 10−12, CI = [0.16, 0.28]; Supplementary Fig. 8e). As 
before, receptor information augments structure–function coupling in 
visual, paracentral and somatomotor regions (Supplementary Fig. 8f). 
Finally, we show correlations of receptor density distribution between 
every pair of receptors in Supplementary Fig. 8g.

Because the autoradiography dataset has a more diverse set of 
ionotropic and metabotropic receptors, we also asked whether we 
would observe a prominence of ionotropic receptors for MEG oscil-
lations. When we fit the 15 autoradiography neurotransmitter recep-
tors to MEG power, we found that AMPA, NMDA, GABAA and α4β2—all 
ionotropic receptors—are most dominant (Supplementary Fig. 4). This 
confirms that the fast oscillatory dynamics captured by MEG are closely 
related to the fluctuations in neural activity modulated by ionotropic 
neurotransmitter receptors.

Finally, we repeated analyses mapping receptor densities to 
cognitive functional activation and disease vulnerability. We found 
a similar topographic gradient linking autoradiography-derived 

receptor densities to Neurosynth-derived functional activations (Sup-
plementary Fig. 9a). Indeed, PET-derived and autoradiography-derived 
receptor and cognitive scores are correlated (Supplementary  
Fig. 8b; Pearson’s r = −0.50, Pperm = 0.0002, CI = [−0.69, −0.26] for recep-
tor scores; Pearson’s r = −0.75, Pperm = 0.0001, CI = [−0.86, −0.60] for 
cognitive scores). We also found consistencies regarding the loadings 
of receptors (Supplementary Fig. 9c) and cognitive processes (Sup-
plementary Fig. 9d). Next, when we mapped autoradiography-derived 
receptor densities to cortical abnormality patterns of multiple dis-
orders, we found prominent associations with receptors that were 
not included in the PET dataset, including a relationship between the 
ionotropic glutamate receptor kainate and depression (Supplemen-
tary Fig. 10).

Sensitivity and robustness analyses
Finally, to ensure that results are not influenced by specific methodo-
logical choices, we repeated analyses using different parcellation reso-
lutions and different receptor subsets, and we compared alternative 
PET tracers to the chosen PET tracers in the present report. Due to 
the low spatial resolution of PET tracer binding, we opted to present 
our main results using a coarse resolution of 100 cortical regions12. 
However, when using a parcellation resolution of 200 and 400 corti-
cal regions, we found that the mean receptor density and receptor 
similarity remains consistent (Supplementary Fig. 11). We next asked 
whether any single receptor or transporter disproportionately influ-
ences receptor similarity. To test this, we iteratively removed a single 
receptor/transporter from the dataset and recomputed the recep-
tor similarity matrix. These 19 different receptor similarity matrices 
are all highly correlated with the original similarity matrix (Pearson’s 
r(4948) > 0.98), confirming that the correspondence between regional 
receptor profiles is not driven by a single neurotransmitter receptor/
transporter.

We also tested whether participant age affects the reported results. 
However, only mean age of individuals included in each tracer map 
was available. Therefore, we fit a linear model between the mean age 
of scanned participants contributing to each receptor/transporter 
tracer map and the z-scored receptor/transporter density, for each 
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distributes the fit of the model across input variables such that the contribution 
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brain region separately. We then subtracted the relationship with age 
from the original receptor densities, resulting in an age-regressed 
receptor density matrix. We found that both age-regressed receptor 
density and age-regressed receptor similarity is highly correlated 
with the original receptor density/similarity (Pearson’s r(4948) = 0.78, 
P = 0, CI = [0.76, 0.79] and Pearson’s r(4948) = 0.984, P = 0, CI = [0.982, 
0.985], respectively; Supplementary Fig. 12), suggesting that age has 
a negligible effect on the reported findings. However, we note that 
this analysis is not sensitive to individual subject variability and that 
certain neurotransmitter receptor systems show changes in receptor 
availability with age38–40.

Discussion
In the present report, we curate a comprehensive 3D atlas of 19 neuro-
transmitter receptors and transporters. We demonstrate that chemo-
architecture is a key layer of the multi-scale organization of the brain. 
Neurotransmitter receptor profiles closely align with the structural 
connectivity of the brain and mediate its link with function, including 
neurophysiological oscillatory dynamics and resting-state hemody-
namic functional connectivity. The overlapping topographic distribu-
tions of these receptors ultimately manifest as patterns of cognitive 
specialization and disease vulnerability.

A key question in neuroscience remains how the brain’s struc-
tural architecture gives rise to its function41. The relationship between 
whole-brain structure and function has been viewed through the 
lens of ‘connectomics’, in which the brain’s structural or functional 
architectures are represented by regional nodes interconnected by 
structural and functional links. The key assumption of this model is 
that nodes are homogenous, effectively abstracting away important 
microarchitectural differences between regions. The present work is 
part of an emerging effort to annotate the connectome with molecular, 
cellular and laminar attributes. Indeed, recent work has incorporated 
microarray gene transcription28, cell types42, myelination19, laminar 
differentiation43 and intrinsic dynamics44 into structural and functional 
models of the brain.

Neurotransmitter receptors and transporters are an important 
molecular annotation for bridging brain structure to brain function. 
Despite this, a comprehensive cortical map of neurotransmitter 
receptors has remained elusive due to numerous methodological and 
data-sharing challenges (but see the ongoing PET-BIDS effort as well as the 
OpenNeuro PET initiative at https://openneuropet.github.io/ (refs. 10,11)).  
The present study is an ongoing Open Science grassroots effort to 
assemble harmonized high-resolution normative images of receptors 
and transporters that can be used to annotate connectomic models 
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of the brain. This work builds on previous initiatives to map receptor 
densities using autoradiography, which has discovered prominent gra-
dients of receptor expression in both human and macaque brains6,20,37. 
Notably, we found consistent results between autoradiography and 
PET datasets, which is encouraging because the PET dataset consists 
of a different group of receptors and transporters and has the added 
advantage of providing in vivo whole-brain data in large samples of 
healthy young participants.

We found a prominent link between receptor distribution and 
both brain structure and function, which supports the idea that the 
emergent functional architecture strongly depends on the underlying 
chemoarchitecture4. Interestingly, we found that the canonical elec-
trophysiological frequency bands can be captured by the overlapping 
topographies of multiple receptors, consistent with the notion that 
receptors influence function by tuning gain and synchrony between 
neuronal populations45. Because receptors are correlated with multiple 
features of brain structure and function, a natural next question is how 
receptor distributions relate to psychological processes. We found a 

multivariate mapping between receptor profiles and cognitive activa-
tions. Interestingly, although individual receptors have been associated 
with specific functions (for example, D1 and selective attention46), our 
findings suggest that the combined spatial distribution of serotonergic 
and dopaminergic receptors underlie patterns of cognitive activation 
related to affect. Altogether, these results offer clues about how mul-
tiple neurotransmitter systems collectively influence cognitive func-
tions and present novel hypotheses that future causal studies can test.

Finally, we discovered a robust spatial concordance between multi-
ple receptor maps and cortical abnormality profiles across a wide range 
of brain disorders. A key step toward developing therapies for specific 
syndromes is to reliably map them onto underlying neural systems. This 
goal is challenging because psychiatric and neurological nosology is 
built around clinical features rather than neurobiological mechanisms. 
Our results complement some previously established associations 
between disorders and neurotransmitter systems and also reveal new 
associations. For instance, we found that the serotonin transporter is 
the strongest contributor to schizophrenia and BD, consistent with 
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the fact that mood disorders are often accompanied with abnormal 
serotonin signaling47,48. On the other hand, we found associations that 
have some preliminary support in the literature but, to our knowledge, 
have not been conclusively established and adopted into clinical prac-
tice, including histamine H3 in PD49, MOR in ADHD36 and D1 and NET in 
temporal lobe epilepsy50,51. Mapping disease phenotypes to receptor 
profiles will help to identify novel targets for pharmacotherapy. This 
analysis is restricted to a single perspective of disease pathology (cor-
tical thinning/thickening) and should be expanded in future work to 
encompass other forms of disease presentation as well as the effects 
of age and pathology on receptor/transporter density.

Collectively, the main results in the present report aim to go 
beyond traditional one-to-one (that is, univariate) associations 
between receptors and brain function, toward considering how mul-
tiple neurotransmitter systems work together. The present report 
builds on the theories generated by previous neurochemical and phar-
macological causal studies, and it is encouraging to see consistent 
results at the level of the whole brain, across multiple neurotransmit-
ter systems and using different imaging modalities. Furthermore, the 
comprehensive approach of this study showcases novel associations 
that may not have been considered before. This large-scale characteri-
zation of receptor systems should be validated in, and will hopefully 
inspire, future causal studies, driving the cycle of discovery. Altogether, 
our data and analyses provide a framework that allows us to test pre-
dictions from the wider literature and consolidate knowledge about 
neurotransmitter systems.

Some potential avenues for future complementary research are 
to study how receptor architecture changes in healthy aging, across 
the sexes, and how they map onto subcortical structures. Indeed, 
dopamine D1 and D2 receptor availability is commonly acknowl-
edged to decrease with age in the subcortex38; serotonin transporter 
and receptor density have been reported to be significantly lower in 
older adults39; and GABAA density is reported to be higher in older 
adults40. Likewise, previously published literature has reported 
greater whole-brain glutamate receptor densities in men52, greater 
kappa-opioid receptor density in men53 and greater mu-opioid recep-
tor density in women54. Finally, multiple neurotransmitter projection 
systems originate in the subcortex1, and neurodegenerative disease 
progression has been linked with abnormal subcortical receptor 
expression55. Ultimately, future research is necessary to characterize 
multi-system receptor distributions across age and sex and within 
subcortical structures.

The present work should be considered alongside some important 
methodological considerations. First, main analyses were conducted 
using PET images, which detect tracer uptake at a low spatial resolution 
and without laminar specificity. Although results were replicated using 
an autoradiography dataset, and in a finer parcellation resolution, a 
comprehensive atlas of laminar-resolved receptor density measure-
ments is necessary to fully understand how regional variations in recep-
tor densities affect brain structure and function21. Second, PET tracer 
maps were acquired around the world, in different participants, on 
different scanners and using specific image acquisition and processing 
protocols recommended for each individual radioligand56,57. To miti-
gate this challenge, we normalized the spatial distributions and focused 
only on analyses related to the relative spatial topographies of recep-
tors as opposed to the absolute values. Third, the linear models used 
in the present analyses assume independence between observations 
and linear relationships between receptors; we, therefore, employed 
spatial autocorrelation-preserving null models to account for the 
spatial dependencies between regions throughout the report. Fourth, 
analyses were restricted to the cortex, obscuring the contributions of 
subcortical neuromodulatory systems. Fifth, although we repeated 
our analyses in an autoradiography dataset, eight of the 15 receptors 
included in the autoradiography dataset are not included in the PET 
datasets, and, therefore, a direct comparison between datasets was not 

possible. Altogether, a 3D whole-brain comprehensive neurotransmit-
ter receptor density dataset constructed using autoradiographs would 
be a valuable complement to the present work6,21.

In summary, we assembled a normative 3D atlas of neurotransmit-
ter receptors in the human brain. We systematically mapped receptors 
to connectivity, dynamics, cognitive specialization and disease vulner-
ability. Our work uncovers a fundamental organizational feature of 
the brain and provides new direction for a multi-scale systems-level 
understanding of brain structure and function.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-022-01186-3.
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Methods
All code and data used to perform the analyses can be found at https://
github.com/netneurolab/hansen_receptors. Volumetric PET images are 
included in neuromaps (https://github.com/netneurolab/neuromaps) 
where they can be easily converted between template spaces94.

PET data acquisition
Volumetric PET images were collected for 19 different neurotransmit-
ter receptors and transporters across multiple studies. To protect 
patient confidentiality, individual participant maps were averaged 
within studies before being shared. Details of each study, the associ-
ated receptor/transporter, tracer, number of healthy participants, 
age and reference with full methodological details can be found in 
Table 1. A more extensive table can be found in the supplementary 
material (Supplementary Table 3), which additionally includes the 
PET camera, number of males and females, PET modeling method, 
reference region, scan length, modeling notes and additional ref-
erences, if applicable. In all cases, only healthy participants were 
scanned (n = 1,238; 718 males and 520 females). Images were acquired 
using best practice imaging protocols recommended for each radioli-
gand56. Altogether, the images are an estimate proportional to recep-
tor densities, and we, therefore, refer to the measured value (that is, 
binding potential and tracer distribution volume) simply as density. 
Note that the NMDA receptor tracer ([18F]GE-179) binds to open (that 
is, active) NMDA receptors86,95. PET images were all registered to the 
MNI-ICBM 152 non-linear 2009 (version c, asymmetric) template 
and then parcellated to 100, 200 and 400 regions according to the 
Schaefer atlas12. Receptors and transporters with more than one 
mean image of the same tracer (that is, 5-HT1B, D2, mGluR5 and VAChT) 
were combined using a weighted average after confirming that the 
images are highly correlated to one another (Supplementary Fig. 13a). 
Finally, each tracer map corresponding to each receptor/transporter 
was z-scored across regions and concatenated into a final region by 
receptor matrix of relative densities.

In some cases, more than one tracer map was available for the same 
neurotransmitter receptor/transporter. We show the comparisons 
between tracers in Supplementary Fig. 13b for the following neuro-
transmitter receptors/transporters: 5-HT1A

9,69, 5-HT1B
9,69,70, 5-HT2A

9,69,96, 
5-HTT9,69, CB1 (refs. (89,97)), D2 (refs. (59,60,98,99)), DAT64,100, GABAA

8,64, MOR93,101 
and NET65,102. Here, we make some specific notes: (1) 5-HTT and GABAA 
involve comparisons between the same tracers (DASB and flumazenil, 
respectively), but one map is converted to density using autoradiography 
data (see ref. 9 and ref. 8) and the other is not7,64,69; (2) raclopride is a popular 
D2 tracer but has unreliable binding in the cortex and is, therefore, an 
inappropriate tracer to use for mapping D2 densities in the cortex, but we 
show its comparison to FLB457 and another D2 tracer, fallypride, for com-
pleteness98,99,103; and (3) the chosen carfentanil (MOR) map was collated 
across carfentanil images in the PET Turku Centre database—because our 
alternative map is a partly overlapping subset of participants, we did not 
combine the tracers into a single mean map93,101.

Synapse density in the cortex was measured in 76 healthy adults 
(45 males, 48.9 ± 18.4 years of age) by administering [11C]UCB-J, a PET 
tracer that binds to the synaptic vesicle glycoprotein 2A (SV2A)104. Data 
were collected on an HRRT PET camera for 90 minutes after injection. 
Non-displaceable binding potential (BPND) was modeled using SRTM2, 
with the centrum semiovale as reference and k′ fixed to 0.027 (popula-
tion value). This group-averaged map was first presented in ref. 105.

Autoradiography receptor data acquisition
Receptor autoradiography data were originally acquired as described 
in ref. 6. Fifteen neurotransmitter receptor densities across 44 cyto-
architectonically defined areas were collected in three postmortem 
brains (age range: 72–77 years, two males). See Supplementary Table 
1 for a complete list of receptors included in the autoradiography 
dataset; see Supplementary Table 2 in ref. 6 for the originally reported 

receptor densities; and see https://github.com/AlGoulas/receptor_
principles for machine-readable Python numpy files of receptor den-
sities37. To best compare PET data analyses with the autoradiography 
dataset, a region-to-region mapping was manually created between 
the 44 available cortical areas in the autoradiography dataset and the 
50 left hemisphere cortical Schaefer-100 regions. Four regions in the 
Schaefer atlas did not have a suitable mapping to the autoradiography 
atlas. As such, the 44-region autoradiography atlas was converted to 
46 Schaefer left hemisphere regions. Finally, receptor densities were 
concatenated and z-scored to create a single map of receptor densities 
across the cortex.

Structural and functional data acquisition
Following the procedure described in ref. 106, we obtained struc-
tural and functional MRI data for 326 unrelated participants (age 
range: 22–35 years, 145 males) from the HCP (S900 release29). All 
four resting-state functional MRI scans (two scans (R/L and L/R 
phase-encoding directions) on day 1 and two scans (R/L and L/R 
phase-encoding directions) on day 2, each about 15 minutes long; 
TR = 720 ms), as well as diffusion-weighted imaging (DWI) data were 
available for all participants. All the structural and functional MRI data 
were pre-processed using HCP minimal pre-processing pipelines29,107. 
We provide a brief description of data pre-processing below, whereas 
detailed information regarding data acquisition and pre-processing 
is available elsewhere29,107.

Structural network reconstruction
DWI data were pre-processed using the MRtrix3 package108 (https://
www.mrtrix.org/). More specifically, fiber orientation distributions 
were generated using the multi-shell, multi-tissue constrained spheri-
cal deconvolution algorithm from MRtrix109,110. White matter edges were 
then reconstructed using probabilistic streamline tractography based 
on the generated fiber orientation distributions111. The tract weights 
were then optimized by estimating an appropriate cross-section mul-
tiplier for each streamline following the procedure proposed by ref. 112,  
and a connectivity matrix was built for each participant using the 
100-region Schaefer parcellation12. A group consensus binary net-
work was constructed using a method that preserves the density and 
edge-length distributions of the individual connectomes113. Edges in 
the group consensus network were assigned weights by averaging 
the log-transformed streamline count of non-zero edges across par-
ticipants. Edge weights were then scaled to values between 0 and 1.

Functional network reconstruction
All 3T functional MRI time series were corrected for gradient 
non-linearity, head motion using a rigid body transformation and 
geometric distortions using scan pairs with opposite phase encod-
ing directions (R/L and L/R)106. Further pre-processing steps include 
co-registration of the corrected images to the T1w structural MR 
images, brain extraction, normalization of whole brain intensity, 
high-pass filtering (>2,000s full width at half maximum (FWHM); to 
correct for scanner drifts) and removing additional noise using the 
ICA-FIX process106,114. The pre-processed time-series were then parcel-
lated to 100 cortical brain regions according to the Schaefer atlas12. 
The parcellated time series were used to construct functional con-
nectivity matrices as a Pearson correlation coefficient between pairs 
of regional time series for each of the four scans of each participant. A 
group-average functional connectivity matrix was constructed as the 
mean functional connectivity across all individuals and scans.

Structure–function coupling
Structure–function coupling at every brain region is defined as the 
adjusted R2 of a simple linear regression model that fits regional com-
municability (that is, the communicability between a brain region to 
every other brain region) to regional functional connectivity (that is, 
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the functional connectivity between a brain region and every other 
brain region). Communicability is defined as the weighted average 
of all walks and paths between two brain regions and represents dif-
fusive communication26,115. Additionally, communicability has been 
previously demonstrated as an important bridge between brain 
structure and function27. In the receptor-informed model, receptor 
similarity between the region of interest and every other region was 
included as an additional independent variable. The significance of 
the receptor-informed structure–function coupling was assessed 
against a null distribution of adjusted R2 from a model that adds a 
rotated regional receptor similarity vector (10,000 repetitions). This 
ensures that the increase in R2 when receptor information is included 
in the model is robust against the addition of a random variable with 
identical spatial autocorrelation.

MEG power
Six-minute resting-state eyes-open magenetoencephalography (MEG) 
time series were acquired from the HCP (S1200 release) for 33 unre-
lated participants (age range: 22–35 years, 17 males)29,107. Complete 
MEG acquisition protocols can be found in the HCP S1200 Release 
Manual. For each participant, we computed the power spectrum at 
the vertex level across six different frequency bands: delta (2–4 Hz), 
theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), low gamma (30–59 Hz) 
and high gamma (60–90 Hz), using the open-source software Brain-
storm116. The pre-processing was performed by applying notch filters 
at 60, 120, 180, 240 and 300 Hz and was followed by a high-pass filter 
at 0.3 Hz to remove slow-wave and DC-offset artifacts. Pre-processed 
sensor-level data were used to obtain a source estimation on HCP’s 
fsLR4k cortex surface for each participant. Head models were com-
puted using overlapping spheres, and the data and noise covariance 
matrices were estimated from the resting-state MEG and noise record-
ings. Brainstorm’s linearly constrained minimum variance (LCMV) 
beamformers method was applied to obtain the source activity for 
each participant. Welch’s method was then applied to estimate power 
spectrum density (PSD) for the source-level data, using overlapping 
windows of length 4 seconds with 50% overlap. Average power at 
each frequency band was then calculated for each vertex (that is, 
source). Source-level power data were then parcellated into 100 corti-
cal regions for each frequency band12.

ENIGMA cortical abnormality maps
The ENIGMA (Enhancing Neuroimaging Genetics through 
Meta-Analysis) consortium is a data-sharing initiative that relies on 
standardized image acquisition and processing pipelines, such that 
disorder maps are comparable117. Patterns of cortical abnormality 
were collected for 13 neurological, neurodevelopmental and psychi-
atric disorders from the ENIGMA consortium and the Enigma toolbox 
(https://github.com/MICA-MNI/ENIGMA; ref. 118), including: 22q11.2 
deletion syndrome (22q)119, ADHD120, ASD121, idiopathic generalized 
epilepsy122, right temporal lobe epilepsy122, left temporal lobe epi-
lepsy122, depression123, OCD124, schizophrenia125, BD126, obesity127, schi-
zotypy128 and PD129. Although most disorders show decreases in cortical 
thickness, some (for example, 22q, ASD and schizotypy) also show 
regional increases in cortical thickness. We, therefore, refer to the 
disorder profiles as ‘cortical abnormalities’. All cortical abnormality 
maps were collected from adult patients (except for ASD for which only 
an age-aggregated (2–64 years) map was available), following identi-
cal processing protocols, for a total of over 21,000 scanned patients 
against almost 26,000 controls. The values for each map are z-scored 
effect sizes (Cohen’s d) of cortical thickness in patient populations 
versus healthy controls. Note that the native and only representatin of 
ENIGMA datasets is the Desikan–Killiany atlas (68 cortical regions)130. 
For visualization purposes, data are inverted such that larger values 
represent greater cortical thinning. Imaging and processing protocols 
can be found at http://enigma.ini.usc.edu/protocols/.

Dominance analysis
Dominance analysis seeks to determine the relative contribution 
(‘dominance’ of each independent variable to the overall fit (adjusted 
R2)) of the multiple linear regression model (https://github.com/
dominance-analysis/dominance-analysis (ref. 31)). This is done by fitting 
the same regression model on every combination of input variables 
(2p − 1 submodels for a model with p input variables). Total dominance 
is defined as the average of the relative increase in R2 when adding a 
single input variable of interest to a submodel, across all 2p − 1 submod-
els. The sum of the dominance of all input variables is equal to the total 
adjusted R2 of the complete model, making total dominance an intuitive 
method that partitions the total effect size across predictors. There-
fore, unlike other methods of assessing predictor importance, such as 
methods based on regression coefficients or univariate correlations, 
dominance analysis accounts for predictor–predictor interactions and 
is interpretable. Dominance was then normalized by the total fit (R2

adj) 
of the model, to make dominance fully comparable both within and 
across models.

Cognitive meta-analytic activation
Probabilistic measures of the association between voxels and cogni-
tive processes were obtained from Neurosynth, a meta-analytic tool 
that synthesizes results from more than 15,000 published functional 
MRI studies by searching for high-frequency keywords (such as ‘pain’ 
and ‘attention’) that are published alongside functional MRI voxel 
coordinates (https://github.com/neurosynth/neurosynth, using the 
volumetric association test maps34). This measure of association is 
the probability that a given cognitive process is reported in the study 
if there is activation observed at a given voxel. Although more than 
1,000 cognitive processes are reported in Neurosynth, we focused 
primarily on cognitive function and, therefore, limit the terms of inter-
est to cognitive and behavioral terms. These terms were selected from 
the Cognitive Atlas, a public ontology of cognitive science131, which 
includes a comprehensive list of neurocognitive processes. We used 
123 terms, ranging from umbrella terms (‘attention’ and ‘emotion’) 
to specific cognitive processes (‘visual attention’ and ‘episodic mem-
ory’), behaviors (‘eating’ and ‘sleep’) and emotional states (‘fear’ and 
‘anxiety’). The coordinates reported by Neurosynth were parcellated 
according to the Schaefer-100 atlas and z-scored12. The probabilistic 
measure reported by Neurosynth can be interpreted as a quantitative 
representation of how regional fluctuations in activity are related to 
psychological processes. The full list of cognitive processes is shown 
in Supplementary Table 2.

Partial least squares analysis
Partial least squares (PLS) analysis was used to relate neurotransmitter 
receptor distributions to functional activation. PLS is an unsupervised 
multivariate statistical technique that decomposes the two datasets 
into orthogonal sets of latent variables with maximum covariance132. 
The latent variables consist of receptor weights, cognitive weights 
and a singular value that represents the covariance between receptor 
distributions and functional activations that is explained by the latent 
variable. Receptor and cognitive scores are computed by projecting the 
original data onto the respective weights, such that each brain region 
is assigned a receptor and cognitive score. Finally, receptor loadings 
are computed as the Pearson’s correlation between receptor densities 
and receptor scores and vice versa for cognitive loadings. Note that 
PLS analysis does not (1) speak to causal relationships between recep-
tors and cognition, (2) make specific univariate receptor–cognition 
associations and (3) preclude the existence of additional relationships 
between receptors and cognitive function.

The significance of the latent variable was assessed on the 
singular value, against the spin-test (see the ‘Null models’ sec-
tion). In the present report, only the first latent variable was sig-
nificant; the remaining latent variables were not analyzed further. 
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Finally, the correlation between receptor and cognitive scores was 
cross-validated (see the ‘Distance-dependent cross-validation’ sec-
tion). The empirical correlation between receptor and cognitive 
scores across all brain regions was r(98) = 0.70; the mean training 
set correlation was r(98) = 0.71; and the mean test set correlation was 
r(98) = 0.54 and Pspin = 0.046, one-sided.

Distance-dependent cross-validation
The robustness of each multilinear model was assessed by 
cross-validating the model by using a distance-dependent method28. 
Specifically, this method was applied to every multilinear regression 
model (Figs. 3c, 4 and 6) and the PLS model (Fig. 5). For each brain 
region (source node), we selected the 75% closest regions as the train-
ing set and the remaining 25% of brain regions as the test set, for a 
total of 100 repetitions in the Schaefer atlas and 68 repetitions in the 
Desikan–Killiany atlas. This stratification procedure minimizes the 
dependence among the two sets due to spatial autocorrelation. In the 
case of multilinear regression models, the model was fit on the training 
set, and the predicted test set output variable (regional functional con-
nectivity, MEG power or disorder maps) was correlated to the empiri-
cal test set values. The distribution of Pearson’s correlations between 
predicted and empirical variables across all repetitions (that is, all brain 
regions) can be found in Supplementary Fig. 2 (structure–function 
coupling), Supplementary Fig. 3 (MEG power) and Supplementary 
Fig. 7 (disorder maps).

In the case of the PLS analysis, the model was fit on the  
training set, and the weights were projected onto the test set to 
calculate predicted receptor and cognitive scores. Training and 
test sets were defined as described above, and the procedure was 
repeated for each brain region as the source node (100 repetitions). 
The correlation between receptor and cognitive score was sepa-
rately calculated in the training and test set. The significance of the 
mean out-of-sample correlation was assessed against a permuted 
null model, constructed by repeating the cross-validation on spatial 
autocorrelation-preserving permutations of the functional associa-
tion matrix (1,000 repetitions; Fig. 5d).

Null models
Spatial autocorrelation-preserving permutation tests were used to 
assess statistical significance of associations across brain regions, 
termed ‘spin tests’24,25,133. We created a surface-based representation 
of the parcellation on the FreeSurfer fsaverage surface via files from 
the Connectome Mapper toolkit (https://github.com/LTS5/cmp). We 
used the spherical projection of the fsaverage surface to define spatial 
coordinates for each parcel by selecting the coordinates of the vertex 
closest to the center of the mass of each parcel. These parcel coordi-
nates were then randomly rotated, and original parcels were reassigned 
the value of the closest rotated parcel (10,000 repetitions). Parcels for 
which the medial wall was closest were assigned the value of the next 
most proximal parcel instead. The procedure was performed at the 
parcel resolution rather than the vertex resolution to avoid upsampling 
the data and to each hemisphere separately. Note that the spin test was 
not applied to autroadiography data because of missing samples. A 
permutation test was applied instead.

A second null model was used to test whether receptor similarity 
is greater in connected regions than unconnected regions. This model 
generates a null structural connectome that preserves the density, edge 
length and degree distributions of the empirical structural connec-
tome22,133. In brief, edges were binned according to Euclidean distance. 
Within each bin, pairs of edges were selected at random and swapped. 
This procedure was then repeated 10,000 times. To compute a P value, 
the mean receptor similarity of unconnected edges was subtracted 
from the mean receptor similarity of connected edges, and this dif-
ference was compared to a null distribution of differences computed 
on the rewired networks.

Reporting Summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data used to perform the analyses can be found at https://github.
com/netneurolab/hansen_receptors. Volumetric PET images, includ-
ing receptor images and synaptic density, are included in neuromaps 
(https://github.com/netneurolab/neuromaps) where they can be 
converted between template spaces94. Autoradiography data are 
available in Supplementary Table 2 of ref. 6. The HCP dataset, includ-
ing diffusion-weighted MRI, functional MRI and MEG, is available at 
https://db.humanconnectome.org/. Neurosynth data are available at 
https://neurosynth.org/. The ENIGMA datasets are available through 
the ENIGMA consortium and the ENIGMA Toolbox (https://github.
com/MICA-MNI/ENIGMA (ref. 134)). Parcellation atlases, including the 
Schaefer-100 and Desikan–Killiany atlas, were obtained from netneu-
rotools (https://github.com/netneurolab/netneurotools).

Code availability
All code used to perform the analyses can be found at https://github.
com/netneurolab/hansen_receptors.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection enigmatoolbox v1.1.1 (https://github.com/MICA-MNI/ENIGMA) was used for fetching ENIGMA data.  

MEG data was processed using the open software toolbox Brainstorm v220420. 

HCP structural data was processed using MRtrix3 v3.0.0

Data analysis All code used to analyze data can be found at https://github.com/netneurolab/hansen_receptors. Data was analyzed using Python 3.8.10, 

MATLAB R2022a, netneurotools v0.2.3 and neuromaps v0.0.3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors. Volumetric PET images, including receptor images and 

synaptic density, are included in neuromaps (https://github.com/netneurolab/neuromaps) where they can be easily converted between template spaces. 

Autoradiography data is available in Supplementary Table 2 of Zilles & Palomero-Gallagher 2017, Frontiers in Neuroanatomy. The HCP dataset, including diffusion 

weighted MRI, fMRI, and MEG is available at https://db.humanconnectome.org/. Neurosynth data is available at https://neurosynth.org/. The ENIGMA datasets are 
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available through the ENIGMA consortium and the ENIGMA toolbox (https://github.com/MICA-MNI/ENIGMA). Parcellation atlases including the Schaefer-100 and 

Desikan-Killiany atlas were fetched from netneurotools (https://github.com/netneurolab/netneurotools).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed. We collated as many PET tracer images as possible to construct a comprehensive (19-receptor/

transporter) atlas. HCP data was used because of the large number of subjects and the relatively equal male/female balance. For HCP data, 

only unrelated subjects were included. For PET data, only healthy subjects were included. The ENIGMA dataset was selected because of the 

large number of subjects in each meta-analysis and because it contains many brain maps for diseases/disorders/conditions that have been 

similarly processed such that comparison between datasets is possible.

Data exclusions No data was excluded.

Replication The analysis pipeline was conducted and replicated: (1) at the Schaefer-100 parcellation resolution, (2) at the Schaefer-200 parcellation 

resolution, (3) at the Schaefer-400 parcellation resolution, (4) using the 68-node Desikan Killiany atlas alongside structural/functional 

connectomes from the Lausanne atlas. Furthermore, we recalculated the receptor similarity matrix in a leave-one-out fashion, and confirmed 

that no single receptor/transporter exerts undue influence on this similarity matrix (correlation between leave-one-out similarity matrix and 

original similarity matrix >0.98 for all receptors). Finally, analyses were repeated using autoradiography data for 15 receptors as opposed to 

PET data for 19 receptors/transporters.

Randomization No randomization was performed as this study does not include experimental groups.

Blinding Blinding is not relevant to this study because it does not include experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics Demographic information for all PET subjects can be found in Table 1. 

Recruitment Only data from healthy control subjects were used in the analyses.

Ethics oversight Each individual PET study was approved, details can be found in the references found in Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Resting-state fMRI and diffusion-weighted MRI

Design specifications Following the procedure described in Vos De Wael et al., 2018, we obtained structural and functional magnetic 

resonance imaging (MRI) data for 326 unrelated participants (age range 22–35 years, 145 males) from the Human 

Connectome Project (HCP; S900 release). All four resting state fMRI scans (two scans (R/L and L/R phase encoding 

directions) on day 1 and two scans (R/L and L/R phase encoding directions) on day 2, each about 15 min long; TR=720 

ms), as well as diffusion weighted imaging (DWI) data were available for all participants. All the structural and functional 

MRI data were pre-processed using HCP minimal pre-processing pipelines. Detailed information regarding data 

acquisition and pre-processing is available elsewhere (Van Essen et al., 2013, Glasser et al., 2013)

Behavioral performance measures No behavioural measures were recorded during the fMRI runs. 

Acquisition

Imaging type(s) Functional and diffusion-weighted MRI

Field strength 3T

Sequence & imaging parameters Multi-band sequence; functional images have a 2-mm isotropic signal resolution, structural modalities were acquired on 

a Siemens Skyra 3T scanner and included a T1-weighted MPRAGE sequence at an isotropic resolution of 0.7mm, and a 

T2-weighted SPACE at an isotropic resolution of 0.7mm. More details on imaging protocols and procedures are available 

at http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html.

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used the HCP data that was previously preprocessed. This preprocessing was done using FSL 5.0.6, FreeSurfer 5.3.0-HCP, 

and Connectome Workbench v1.1.1.

Normalization Image processing includes correcting for gradient distortion caused by non-linearities, correcting for bias field distortions, 

and registering the images to a standard reference space.

Normalization template fs_LR_32k surface mesh

Noise and artifact removal FMRIB's ICA-based X-noisefier (FIX) and global signal regression

Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings Functional and structural connectomes were used for comparison with PET-derived receptor similarity.

Effect(s) tested We tested whether receptor similarity is greater when regions are connected (SC) or within the same intrinsic functional 

network (fMRI).

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

NA

Correction NA

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity We used functional connectivity, which was constructed by correlated pairwise regional functional time 

series, and averaging this across subjects.

Graph analysis We used structural connectivity (weighted) matrices. Structural connectivity between pairs of regions was 
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Graph analysis measured in terms of fiber density, defined as the number of streamlines between two regions, normalized 

by the average length of the streamlines and average surface area of the two regions. The goal of this 

normalization is to compensate for the bias toward longer fibers inherent in the tractography procedure, as 

well as differences in region size.

Multivariate modeling and predictive analysis Regional vectors of functional and connectivity were used in a multilinear regression model which fit 

measures of structure (distance, path length, communicability) and receptor similarity to functional 

connectivity.
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