55 research outputs found

    Social Media and Social Movement:Contemporary Online Activism in Asia

    Get PDF
    In contemporary era social media and mass movement are playing a crucial role in global public sphere. Statistics shows that in the countries of Asian continent active social media penetration is flourishing with times. The paper will attempt to conduct an explanatory research by using analysis of Twitter Revolution (Iran), Umbrella Revolution (Hong Kong), Sunflower Protest (Taiwan), Shah Bag Movement (Bangladesh), Delhi Gang Rape Agitation (India) and Bersih Movement (Malaysia). In the context of theoretical framework, the paper will attempt to discuss public opinion of Walter Lippmann (1922), the structural transformations of the public sphere by Jurgen Habermas (1964), social identity model of deindividuation effects (SIDE) by Riecher, Spears & Postmes (1995), mediapolis of Roger Silverstone (2007) etc. The paper will primarily try to identify the role of social media in mobilizing social movement of Asian region

    Benchmarking Differential Privacy and Federated Learning for BERT Models

    Full text link
    Natural Language Processing (NLP) techniques can be applied to help with the diagnosis of medical conditions such as depression, using a collection of a person's utterances. Depression is a serious medical illness that can have adverse effects on how one feels, thinks, and acts, which can lead to emotional and physical problems. Due to the sensitive nature of such data, privacy measures need to be taken for handling and training models with such data. In this work, we study the effects that the application of Differential Privacy (DP) has, in both a centralized and a Federated Learning (FL) setup, on training contextualized language models (BERT, ALBERT, RoBERTa and DistilBERT). We offer insights on how to privately train NLP models and what architectures and setups provide more desirable privacy utility trade-offs. We envisage this work to be used in future healthcare and mental health studies to keep medical history private. Therefore, we provide an open-source implementation of this work.Comment: 4 pages, 3 tables, 1 figur

    Isothermal compressibility of hadronic matter formed in relativistic nuclear collisions

    No full text
    We present the first estimates of isothermal compressibility ( kT ) of hadronic matter formed in relativistic nuclear collisions ( sNN=7.7 GeV to 2.76 TeV) using experimentally observed quantities. kT is related to the fluctuation in particle multiplicity, temperature, and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of kT has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT, and EPOS event generators, and estimations of kT are made for Pb–Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate kT as a function of collision energy. Our results show a decrease in kT at low collision energies to sNN∼20 GeV , beyond which the kT values remain almost constant.We present the first estimates of isothermal compressibility (\kT) of hadronic matter formed in relativistic nuclear collisions (sNN=7.7\sqrt{s_{\rm NN}} = 7.7 GeV to 2.76~TeV) using experimentally observed quantities. \kT~is related to the fluctuation in particle multiplicity, temperature, and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of \kT~has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT, and EPOS event generators, and estimations of \kT~are made for Pb-Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate \kT~as a function of collision energy. Our results show a decrease in \kT~at low collision energies to \sNN~\sim~20~GeV, beyond which the \kT~values remain almost constant

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    K∗(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8

    No full text
    The production of K∗(892)0 and ϕ(1020) in pp collisions at s√ = 8 TeV were measured using Run 1 data collected by the ALICE collaboration at the LHC. The pT-differential yields d2N/dydpT in the range 0 < pT < 20 GeV/c for K∗0 and 0.4 < pT < 16 GeV/c for ϕ have been measured at midrapidity |y| < 0.5. Moreover, improved measurements of the K∗(892)0 and ϕ(1020) at s√ = 7 TeV are presented. The collision energy dependence of pT distributions, pT-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are measured to be similar to those found at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The pT-differential yields of K∗0 and ϕ in pp collisions at s√ = 8 TeV are compared with the expectations of different Monte Carlo event generators

    Global polarization of ΛΛˉ\Lambda \bar \Lambda hyperons in Pb-Pb collisions at sNN\sqrt {s_{NN}} = 2.76 and 5.02 TeV

    No full text
    International audienceThe global polarization of the Λ\Lambda and Λ\overline\Lambda hyperons is measured for Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum (pTp_{\rm{T}}) for the range of centrality 5-50%, 0.5<pT<50.5 < p_{\rm{T}} <5 GeV/cc, and rapidity y<0.5|y|<0.5. The hyperon global polarization averaged for Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 and 5.02 TeV is found to be consistent with zero, PH\langle P_{\rm{H}}\rangle (%) \approx 0.01 ±\pm 0.06 (stat.) ±\pm 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%

    Multiplicity dependence of (anti-)deuteron production in pp collisions at s\sqrt{s} = 7 TeV

    No full text
    In this letter, the production of deuterons and anti-deuterons in pp collisions at s\sqrt{s} = 7 TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum (pTp_{\rm T}). The measurements are discussed in the context of hadron–coalescence models. The coalescence parameter B2_2 , extracted from the measured spectra of (anti-)deuterons and primary (anti-)protons, exhibits no significant pTp_{\rm T}-dependence for pTp_{\rm T} < 3 GeV/c , in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per nucleon, the B2_2 parameter is found to decrease smoothly from low multiplicity pp to Pb–Pb collisions, in qualitative agreement with more elaborate coalescence models. The measured mean transverse momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that simultaneously describe pion, kaon and proton spectra, in contrast to central Pb–Pb collisions. The ratio between the pTp_{\rm T}-integrated yield of deuterons to protons, d/p, is found to increase with the charged-particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp collisions at the LHC
    corecore