30 research outputs found

    Subconjunctival delivery of p75NTR antagonists reduces the inflammatory, vascular, and neurodegenerative pathologies of diabetic retinopathy

    Get PDF
    The p75NTR is a novel therapeutic target validated in a streptozotocin mouse model of diabetic retinopathy. Intravitreal (IVT) injection of small molecule p75NTR antagonist THX-B was therapeutic and resolved the inflammatory, vascular, and neurodegenerative phases of the retinal pathology. To simplify clinical translation, we sought a superior drug delivery method that circumvents risks associated with IVT injections. METHODS. We compared the pharmacokinetics of a single 40 lg subconjunctival (SCJ) depot to the reported effective 5 lg IVT injections of THX-B. We quantified therapeutic efficacy, with endpoints of inflammation, edema, and neuronal death. RESULTS. The subconjunctival depot affords retinal exposure equal to IVT injection, without resulting in detectable drug in circulation. At week 2 of diabetic retinopathy, the SCJ depot provided therapeutic efficacy similar to IVT injections, with reduced inflammation, reduced edema, reduced neuronal death, and a long-lasting protection of the retinal structure. CONCLUSIONS. Subconjunctival injections are a safe and effective route for retinal delivery of p75NTR antagonists. The subconjunctival route offers an advantageous, less-invasive, more compliant, and nonsystemic method to deliver p75NTR antagonists for the treatment of retinal diseases.Fil: Galan, Alba. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Barcelona, Pablo Federico. Mc Gill University. Lady Davis Research Intitute; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Nedev, Hinyu. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Sarunic, Marinko V.. University Fraser Simon; CanadáFil: Jian, Yifan. University Fraser Simon; CanadáFil: Saragovi, H. Uri. Mc Gill University. Lady Davis Research Intitute; Canad

    Activated α2-Macroglobulin regulates LRP1 levels at the plasma membrane through the activation of a Rab10-dependent exocytic pathway in retinal Müller glial cells

    Get PDF
    Activated α2-macroglobulin (α2M*) and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), have been linked to proliferative retinal diseases. In Müller glial cells (MGCs), the α2M*/LRP1 interaction induces cell signaling, cell migration, and extracellular matrix remodeling, processes closely associated with proliferative disorders. However, the mechanism whereby α2M* and LRP1 participate in the aforementioned pathologies remains incompletely elucidated. Here, we investigate whether α2M* regulates both the intracellular distribution and sorting of LRP1 to the plasma membrane (PM) and how this regulation is involved in the cell migration of MGCs. Using a human Müller glial-derived cell line, MIO-M1, we demonstrate that the α2M*/LRP1 complex is internalized and rapidly reaches early endosomes. Afterward, α2M* is routed to degradative compartments, while LRP1 is accumulated at the PM through a Rab10-dependent exocytic pathway regulated by PI3K/Akt. Interestingly, Rab10 knockdown reduces both LRP1 accumulation at the PM and cell migration of MIO-M1 cells induced by α2M*. Given the importance of MGCs in the maintenance of retinal homeostasis, unravelling this molecular mechanism can potentially provide new therapeutic targets for the treatment of proliferative retinopathies.Fil: Jaldín Fincati, Javier Roberto. University of Toronto; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Actis Dato, Virginia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Díaz, Nicolás Maximiliano. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Sánchez, María C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Barcelona, Pablo Federico. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Chiabrando, Gustavo Alberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    p75NTR antagonists attenuate photoreceptor cell loss in murine models of retinitis pigmentosa

    Get PDF
    ProNGF signaling through p75NTR has been associated with neurodegenerative disorders. Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies that causes progressive photoreceptor cell degeneration and death, at a rate dependent on the genetic mutation. There are more than 300 mutations causing RP, and this is a challenge to therapy. Our study was designed to explore a common mechanism for p75NTR in the progression of RP, and assess its potential value as a therapeutic target. The proNGF/p75NTR system is present in the dystrophic retina of the rd10 RP mouse model. Compared with wild-type (WT) retina, the levels of unprocessed proNGF were increased in the rd10 retina at early degenerative stages, before the peak of photoreceptor cell death. Conversely, processed NGF levels were similar in rd10 and WT retinas. ProNGF remained elevated throughout the period of photoreceptor cell loss, correlating with increased expression of α2-macroglobulin, an inhibitor of proNGF processing. The neuroprotective effect of blocking p75NTR was assessed in organotypic retinal cultures from rd10 and RhoP mouse models. Retinal explants treated with p75NTR antagonists showed significantly reduced photoreceptor cell death, as determined by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and by preservation of the thickness of the outer nuclear layer (ONL), where photoreceptor nuclei are located. This effect was accompanied by decreased retinal-reactive gliosis and reduced TNFα secretion. Use of p75NTR antagonist THX-B (1,3-diisopropyl-1-[2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-purin-7-yl)-acetyl]-urea) in vivo in the rd10 and RhoP mouse models, by a single intravitreal or subconjunctival injection, afforded neuroprotection to photoreceptor cells, with preservation of the ONL. This study demonstrates a role of the p75NTR/proNGF axis in the progression of RP, and validates these proteins as therapeutic targets in two different RP models, suggesting utility irrespective of etiology.Fil: Platón-Corchado, María. Consejo Superior de Investigaciones Científicas; EspañaFil: Barcelona, Pablo Federico. Mc Gill University. Lady Davis Research Intitute; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Jmaeff, Sean. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Marchena, Miguel. Consejo Superior de Investigaciones Científicas; EspañaFil: Hernández-Pinto, Alberto M.. Consejo Superior de Investigaciones Científicas; EspañaFil: Hernández-Sánchez, Catalina. Consejo Superior de Investigaciones Científicas; EspañaFil: Saragovi, H. Uri. Mc Gill University. Lady Davis Research Intitute; CanadáFil: de la Rosa, Enrique J. Centro de Investigaciones Biológicas; Españ

    Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and α2-Macroglobulin in retinal and choroidal tissue of proliferative retinopathies

    Get PDF
    The immunolocalization of the low density lipoprotein receptor-related protein 1 (LRP1) and its ligand α 2-Macroglobulin (α2M) was examined in tissues from human donor eyes of normal, diabetic and sickle cell disease subjects. Streptavidin alkaline phosphatase immunohistochemistry was performed with a mouse anti-human LRP1 and rabbit anti-human α2M antibodies. Retinal and choroidal blood vessels were labeled with mouse anti-human CD34 antibody in adjacent tissue sections. Mean scores for immunostaining from the pathological and control eyes were statistically compared.LRP1 immunoreactivity was very weak to negative in the neural retina of normal subjects except in scattered astrocytes. LRP1 expression in diabetic eyes was detected in the internal limiting membrane (ILM), astrocytes, inner photoreceptor matrix, choriocapillaris and choroidal stroma. The ligand α2M, however, was limited mainly to blood vessel walls, some areas of the inner nuclear layer (INL), photoreceptors, RPE-Bruch's membrane-choriocapillaris complex, intercapillary septa, and choroidal stroma. In sickle cell eyes, avascular and vascular retina as well as choroidal neovascularization (CNV) were analyzed. In avascular areas, LRP1 immunoreactivity was in innermost retina (presumably ILM, astrocytes, and Muller cells) and INL as well as RPE-Bruch's membrane-choriocapillaris complex and choroidal stroma α2M was very weak in avascular peripheral retina compared to vascularized areas and limited to stroma in choroid. In contrast, in areas with CNV, LRP1 immunoreactivity was significantly decreased in overlying retina and in RPE-Bruch's membrane and choroidal stroma compared to the controls, while α2M was elevated in RPE-Bruch's membrane near CNV compared to normal areas in sickle cell choroid. The mean scores revealed that LRP1 and α2M in neural retina were significantly elevated in astrocytes and ILM in diabetic eyes (p ≤ 0.05), whereas in sickle cell eyes scores were elevated in ILM and INL (p ≤ 0.05). In addition, α2M immunoreactivity was in photoreceptors in both ischemic retinopathies. In choroid, the patterns of LRP1 and α2M expression were different and not coincident.This is the first demonstration of the presence of LRP1 and α2M in human proliferative retinopathies. Elevated LRP1 expression in sickle cell neural retina and diabetic inner retina and choroid suggests that LRP1 plays an important role in ischemic neovascular diseases. © 2010 Elsevier Ltd.Fil: Barcelona, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Luna, J. D.. Fundación VER. Departamento de Oftalmología; ArgentinaFil: Chiabrando, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Juarez, P. C.. Fundación VER. Departamento de Oftalmología; ArgentinaFil: Bhutto IA. University Johns Hopkins; Estados UnidosFil: McLeod, D. S.. University Johns Hopkins; Estados UnidosFil: Sanchez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Lutty, G. A.. University Johns Hopkins; Estados Unido

    The paradoxical signals of two TrkC receptor isoforms supports a rationale for novel therapeutic strategies in ALS

    Get PDF
    Full length TrkC (TrkC-FL) is a receptor tyrosine kinase whose mRNA can be spliced to a truncated TrkC.T1 isoform lacking the kinase domain. Neurotrophin-3 (NT-3) activates TrkC-FL to maintain motor neuron health and function and TrkC.T1 to produce neurotoxic TNF-α; hence resulting in opposing pathways. In mouse and human ALS spinal cord, the reduction of miR-128 that destabilizes TrkC.T1 mRNA results in up-regulated TrkC.T1 and TNF-α in astrocytes. We exploited conformational differences to develop an agonistic mAb 2B7 that selectively activates TrkC-FL, to circumvent TrkC.T1 activation. In mouse ALS,2B7 activates spinal cord TrkC-FL signals, improves spinal cord motor neuron phenotype and function, and significantly prolongs life-span. Our results elucidate biological paradoxes of receptor isoforms and their role in disease progression, validate the concept of selectively targeting conformational epitopes in naturally occurring isoforms, and may guide the development of pro-neuroprotective (TrkC-FL) and anti-neurotoxic (TrkC.T1) therapeutic strategies.Fil: Brahimi, Fouad. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Maira, Mario. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Barcelona, Pablo Federico. Mc Gill University. Lady Davis Research Intitute; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Galan, Alba. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Aboulkassim, Tahar. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Teske, Katrina. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Rogers, Mary Louise. Flinders University, Department Of Human Physiology; AustraliaFil: Bertram, Lisa. University of British Columbia; CanadáFil: Wang, Jing. University of British Columbia; CanadáFil: Yousefi, Masoud. University of British Columbia; CanadáFil: Rush, Robert. Flinders University, Department Of Human Physiology; AustraliaFil: Fabian, Marc. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Cashman, Neil. University of British Columbia; CanadáFil: Saragovi, H. Uri. Mc Gill University. Lady Davis Research Intitute; Canad

    Neovascular retinopathies: etiology and models of study for searching new therapeutic targets

    Get PDF
    Las retinopatías neovasculares se encuentran dentro de las principales causas de ceguera. En estas patologías, el déficit visual es causado en parte por un desbalance de factores angiogénicos posterior a un evento isquémico, que provoca la formación de neovasos, hemorragias, entre otros, con reducción parcial o total de la visión. El factor de crecimiento endotelial vascular A (VEGF-A) es la molécula más estudiada como responsable de la neovascularización retiniana inducida por isquemia en patologías oculares. Los tratamientos existentes para estas retinopatías (fotocoagulación, vitrectomía, inyección intraocular de anticuerpos monoclonales) intentan detenerlas pero solo en casos muy puntuales logran mejorarlas, por lo que la búsqueda de nuevos blancos terapéuticos es un desafío en la actualidad. En esta revisión, proporcionaremos información sobre los conocimientos actuales de la etiología de las retinopatías neovasculares más prevalentes, los modelos de estudio de las mismas y los potenciales blancos terapéuticos nuevos que han surgido de investigaciones mediante la utilización de los mismos.Neovascular retinopathies are the main causes of blindness. In these pathologies, the visual deficit has been caused, at least in part, by an imbalance of angiogenic factors generated by ischemia, which produces neovessel formation and hemorrhages, with a partial or total reduction of vision. Vascular endothelial growth factor A (VEGF-A) is the most studied molecule that mediates retinal neovascularization induced by ischemia in ocular pathologies. Treatments for these retinopathies (photocoagulation, vitrectomy, intraocular injection of monoclonal antibodies) try to stop them but only in very specific cases they improve it. Therefore, searching new therapeutic targets is a challenge at present. In this review, we will provide information about the current knowledge related to etiology of the most prevalent neovascular retinopathies, in vivo and in vitro models to study them and the new therapeutic candidates that have arisen.Fil: Ridano, Magali Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Luna Pinto, Jose Domingo. Fundación VER; Argentina. Centro Privado de Ojos Romagosa; ArgentinaFil: Lorenc, Valeria Erika. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Subirada Caldarone, Paula Virginia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Paz, Maria Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Vaglienti, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Barcelona, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Sanchez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    A Large Multicenter Prospective Study of Community-Onset Healthcare Associated Bacteremic Urinary Tract Infections in the Era of Multidrug Resistance: Even Worse than Hospital Acquired Infections?

    Get PDF
    Introduction: Healthcare-associated (HCA) infections represent a growing public health problem. The aim of this study was to compare community-onset healthcare associated (CO-HCA) bacteremic urinary tract infections (BUTI) and hospital-acquired (HA)-BUTI with special focus on multidrug resistances (MDR) and outcomes. Methods: ITUBRAS-project is a prospective multicenter cohort study of patients with HCA-BUTI. All consecutive hospitalized adult patients with CO-HCA-BUTI or HA-BUTI episode were included in the study. Exclusion criteria were: patients \ 18 years old, non-hospitalized patients, bacteremia from another source or primary bacteremia, non-healthcare related infections and infections caused by unusual pathogens of the urinary tract. Th main outcome variable was 30-day all-cause mortality with day 1 as the first day of positive blood culture. Logistic regression was used to analyze factors associated with clinical cure at hospital discharge and with receiving inappropriate initial antibiotic treatment. Cox regression was used to evaluate 30-day all-cause mortality. Results: Four hundred forty-three episodes were included, 223 CO-HCA-BUTI. Patients with CO-HCA-BUTI were older (p \ 0.001) and had more underlying diseases (p = 0.029) than those with HA-BUTI. The severity of the acute illness (Pitt score) was also higher in CO-HCABUTI (p = 0.026). Overall, a very high rate of MDR profiles (271/443, 61.2%) was observed, with no statistical differences between groups. In multivariable analysis, inadequate empirical treatment was associated with MDR profile (aOR 3.35; 95% CI 1.77?6.35), Pseudomonas aeruginosa (aOR 2.86; 95% CI 1.27?6.44) and Charlson index (aOR 1.11; 95% CI 1.01?1.23). Mortality was not associated with the site of acquisition of the infection or the presence of MDR profile. However, in the logistic regression analyses patients with CO-HCA-BUTI (aOR 0.61; 95% CI 0.40?0.93) were less likely to present clinical cure. Conclusion: The rate of MDR infections was worryingly high in our study. No differences in MDR rates were found between CO-HCA-BUTI and HA-BUTI, in the probability of receiving inappropriate empirical treatment or in 30-day mortality. However, CO-HCA-BUTIs were associated with worse clinical cure.Funding. This study and the journal’s Rapid Service Fee are sponsored and funded by MSD Spain. The study was also supported by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0004, RD16/ 0016/0005, RD16/0016/0007, RD16/0016/0010, RD16/0016/0011 and RD16/0016/0015), co-financed by the European Development Regional Fund ‘A way to achieve Europe’ (ERDF), Operative program Intelligent Growth 2014–2020

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Modulation of P75NTR/PRONGEF as a therapeutic approach for degenerative retinopathies

    No full text
    This chapter describes the experimental validation of neurotrophins / neurotrophin receptors as therapeutic targets for the treatment of retinal neurodegenerative disorders. Neuropathies often have inflammatory or vascular pathologies as part of the disease mechanism (e.g. glaucoma,diabetic retinopathy and retinitis pigmentosa) leading to neuronal death. Maintenance ofneuronal phenotype and neuronal survival are promoted by the neurotrophins / neurotrophinreceptors. These have historically been valued as potentially useful pharmacological targets to foster neuroprotection or neuro-regeneration. This is the concept of "neurotrophin protection". Paradoxically, however, during embryonic development neurotrophins / neurotrophin receptors can promote synaptic pruning and neurodegeneration, and in adult disease states this process is recapitulated to drive neuronal death. This is the concept of "neurotrophin toxicity" and blockingthis process may be beneficial. This chapter compares the traditional therapeutic strategy of "neurotrophin protection" with the emerging "anti-neurotrophin toxicity" therapeutic strategy. Each approach may have a unique value for specific diseases or for specific stages of disease progression, may be combined given that they address different mechanisms of action, or may complement neuro-regenerative strategies.Fil: Saragovi, H. Uri. McGill University; CanadáFil: Galan, A.. McGill University; CanadáFil: Barcelona, Pablo Federico. Mc Gill University. Lady Davis Research Intitute; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
    corecore