86 research outputs found

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Severe Left-to-Right Shunting from Iatrogenic Atrial Septal Defect

    No full text

    Identification of E-selectin as a Novel Target for the Regulation of Postnatal Neovascularization

    No full text
    OBJECTIVES: We previously reported that stromal cell-derived factor-1α (SDF-1α, a homing signal for recruiting endothelial progenitor cells (EPC) to areas of neovascularization), is down-regulated in diabetic wounds (1). We now investigate signals whereby mature endothelial cells (EC) and circulating EPC achieve SDF-1α-mediated EPC homing. METHODS: SDF-1α in diabetic wounds were therapeutically increased by injection of SDF-1α–engineered bone marrow-derived fibroblasts versus control cells (N= 48 (20, NOD), (28, STZ-C57)). PCR-array gene expression differences were validated by Western blotting and immunohistochemistry. The role of adhesion molecule(s) in mediating SDF-1α-induced EPC homing and wound healing was furthered studied using antagonists in vitro and in vivo. RESULTS: Increasing wound SDF-1α via cell-base therapy promotes healing in diabetic mice (~20% increase in healing rates by day 3, p=0.006). SDF-1α increased EC-EPC adhesion and specifically upregulated E-selectin expression in human microvascular EC (2.3-fold increase, p<0.01). This effect was also significant in blood vessels of the experimental mice and resulted in increased wound neovascularization. The regulatory effects of SDF-1α on EC-EPC adhesion and EPC homing were specifically mediated by E-selectin, as the application of E-selectin antagonists significantly inhibited SDF-1α-induced EC-EPC adhesion, EPC homing, wound neovascularization, and wound healing. CONCLUSIONS: SDF-1α–engineered cell-based therapy promotes diabetic wound healing in mice by specifically upregulating E-selectin expression in mature EC leading to increase EC-EPC adhesion, EPC homing and increased wound neovascularization. These findings provide novel insight into the signals underlying the biological effect of SDF-1α on EPC homing and point to E-selectin as a new potential target for therapeutic manipulation of EPC trafficking in diabetic wound healing
    corecore