70 research outputs found

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.

    Heavy-quark condensate at zero- and nonzero temperatures for various forms of the short-distance potential

    Get PDF
    With the use of the world-line formalism, the heavy-quark condensate in the SU(N)-QCD is evaluated for the cases when the next-to-1/r term in the quark-antiquark potential at short distances is either quadratic, or linear. In the former case, the standard QCD-sum-rules result is reproduced, while the latter result is a novel one. Explicitly, it is UV-finite only in less than four dimensions. This fact excludes a possibility to have, in four dimensions, very short strings (whose length has the scale of the lattice spacing), and consequently the short-range linear potential (if it exists) cannot violate the OPE. In any number of dimensions, the obtained novel expression for the quark condensate depends on the string tension at short distances, rather than on the gluon condensate, and grows linearly with the number of colors in the same way as the standard QCD-sum-rules expression. The use of the world-line formalism enables one to generalize further both results to the case of finite temperatures. A generalization of the QCD-sum-rules expression to the case of an arbitrary number of space-time dimensions is also obtained and is shown to be UV-finite, provided this number is smaller than six.Comment: 11 pages, no figure

    Looking into the matter of light-quark hadrons

    Full text link
    In tackling QCD, a constructive feedback between theory and extant and forthcoming experiments is necessary in order to place constraints on the infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in hadron physics. The Dyson-Schwinger equations provide a tool with which to work toward this goal. They connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence provide a means of elucidating the material content of real-world QCD. This contribution illustrates these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the spectra of mesons and baryons, and the critical role played by hadron-hadron interactions in producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011," 23-27 May, 2011, Dallas. The Proceedings will be published in Few Body System

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Narrow width of a glueball decay into two mesons

    Get PDF
    The widths of a glueball decay to two pions or kaons are analyzed in the pQCD framework. Our results show that the glueball ground state has small branching ratio for two-meson decay mode, which is around 10210^{-2}. The predicted values are consistent with the data of ξππ,KK\xi\to\pi\pi, KK if ξ\xi particle is a 2++2^{++} glueball. Applicability of pQCD to the glueball decay and comparison with χcJ\chi_{cJ} decay are also discussed.Comment: 12 pages, revtex, 2 ps figure

    The light sigma meson

    Full text link
    In the framework of the dispersion relation N/D-approach, we restore the low-energy pi-pi (IJ^{PC}=00^{++})-wave amplitude sewing it with the previously obtained K-matrix solution for the region 450-1900 MeV. The restored N/D-amplitude has a pole on the second sheet of the complex-s plane near the pi-pi threshold, that is the light sigma meson.Comment: 5 pages, LaTeX, 3 EPS figures, epsfig.st

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD

    Full text link
    An extended version of the AdS/QCD Soft-Wall model that incorporates QCD-like anomalous contributions to the dimensions of gauge theory operators is proposed. This exploratory approach leads to a relation between scalar glueball masses and beta functions. Using this relation, properties of the glueball mass spectroscopy that emerge from phenomenological beta functions proposed in the literature are investigated. The reverse problem is also considered: starting from a linear Regge trajectory which fits the lattice glueball masses, beta functions with different asymptotic infrared behaviours are found. Remarkably, some of them present a fixed point at finite coupling.Comment: 27 pages. V4: Expanded text with more discussions. Results unchanged. To appear in EPJ

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health
    corecore