171 research outputs found

    Percolation and jamming in random sequential adsorption of linear segments on square lattice

    Full text link
    We present the results of study of random sequential adsorption of linear segments (needles) on sites of a square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only in a restricted range of the needles length. We determine the values of the correlation length exponent for percolation, jamming and their ratio

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Energy Spectra of Reactor Neutrinos at KamLAND

    Get PDF
    The upcoming reactor neutrino experiment, KamLAND, has the ability to explore the Large Mixing Angle (LMA) solution to the solar neutrino problem. Here, we investigate the precision to which KamLAND should be able to measure these parameters, utilizing the distortion of the energy spectrum of reactor neutrinos. Incomplete knowledge of the fuel composition of the reactors will lead to some error on this measurement. We estimate the size of this effect.Comment: 7 pages, 7 figures. References added. Minor changes in wordin

    Gravity and Matter in Extra Dimensions

    Full text link
    In this paper, we derive from the viewpoint of the effective 4D theory the interaction terms between linearized gravity propagating in N>= 2 large extra dimensions and matter propagating into one extra dimension. This generalizes known results for the interactions between gravity and 4D matter in ADD-type models. Although we assume that matter is described by an Universal Extra Dimensions (UED) scenario (with all fields propagating into the fifth dimension), we present our results in a general form that can be easily adapted to various other scenarios of matter distribution. We then apply our results to the UED model on a fat brane and consider some phenomenological applications. Among these are the computation of the gravitational decay widths of the matter KK excitations and the effect the width of the brane has on the interactions of gravity with Standard Model particles. We also estimate the cross-section for producing single KK excitations at colliders through KK number-violating gravitational interaction.Comment: 21 pages, 6 figures, Late

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+e−e^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+e−←ffˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    Gauge coupling unification with large extra dimensions

    Get PDF
    We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.Comment: 17 pages, 3 figures, some discussions added, few additional references included. Version to appear in Phys. Rev.

    Torsion Constraints in the Randall--Sundrum Scenario

    Get PDF
    Torsion appears due to fermions coupled to gravity and leads to the strongest particle physics bounds on flat extra dimensions. In this work, we consider torsion constraints in the case of a warped extra dimension with brane and bulk fermions. From current data we obtain a 3-sigma bound on the TeV--brane mass scale scale \Lambda_\pi > 2.2 (10) TeV for the AdS curvature k=1 (0.01) in (reduced) Planck units. If Dirac or light sterile neutrinos reside on the brane, the bound increases to 17 (78) TeV.Comment: typos corrected, matches the Phys. Rev. D versio

    Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders

    Get PDF
    With one extra dimension, current high precision electroweak data constrain the masses of the first Kaluza-Klein excitations of the Standard Model gauge fields to lie above ≃4\simeq 4 TeV. States with masses not much larger than this should be observable at the LHC. However, even for first excitation masses close to this lower bound, the second set of excitations will be too heavy to be produced thus eliminating the possibility of realizing the cleanest signature for KK scenarios. Previous studies of heavy Z′Z' and W′W' production in this mass range at the LHC have demonstrated that very little information can be obtained about their couplings to the conventional fermions given the limited available statistics and imply that the LHC cannot distinguish an ordinary Z′Z' from the degenerate pair of the first KK excitations of the γ\gamma and ZZ. In this paper we discuss the capability of lepton colliders with center of mass energies significantly below the excitation mass to resolve this ambiguity. In addition, we examine how direct measurements obtained on and near the top of the first excitation peak at lepton colliders can confirm these results. For more than one extra dimension we demonstrate that it is likely that the first KK excitation is too massive to be produced at the LHC.Comment: 38 pages, 10 Figs, LaTex, comments adde

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore