18 research outputs found

    Toxicity assessment of certain insecticides on the red soft scale insect, Pulvinaria tenuivalvata (Newstead) infesting sugarcane plants

    Get PDF
    Pulvinaria tenuivalvata (Newstead) (Hemiptera: Coccidae) red soft scale insect is one of the most prevalent insect pests that attacks sugarcane plants. Insecticidal efficiency of six selected insecticides (Malatox, Sulfar, Admiral, Nomolt, Tafaban and Biover) was evaluated for their impact against nymphs and adult females of P. tenuivalvata on sugarcane leaves using leave dipping methods. This investigation was carried out for two successive seasons (July 2021-2022) at the laboratory of the Plant Protection Research Department at the El-Mattana Agricultural Research Station, Luxor Governorate, Egypt. Obtained results showed that the tested insecticides varied in efficacy on the different stages of pest (nymphs and adult females). Moreover, the nymphal stage of P.tenuivalvata was more susceptible to the tested pesticides compared to the adult stage. Admiral and nomolt were the most toxic against the nymphal and adult female stages of P. tenuivalvata on sugarcane leaves, sulfar, however, was the least successful in controlling this pest

    Comparative Assessment of the Bioremedial Potentials of Potato Resistant Starch-Based Microencapsulated and Non-encapsulated Lactobacillus plantarum to Alleviate the Effects of Chronic Lead Toxicity

    Get PDF
    Lead (Pb) is a well-recognized and potent heavy metal with non-biodegradable nature and can induce the oxidative stress, degenerative damages in tissues, and neural disorders. Certain lactic acid bacterial strains retain the potential to mitigate the lethal effects of Pb. The present work was carried out to assess the Pb bio-sorption and tolerance capabilities of Lactobacillus plantarum spp. Furthermore, potato resistant starch (PRS)-based microencapsulated and non-encapsulated L. plantarum KLDS 1.0344 was utilized for bioremediation against induced chronic Pb toxicity in mice. The experimental mice were divided into two main groups (Pb exposed and non-Pb exposed) and, each group was subsequently divided into three sub groups. The Pb exposed group was exposed to 100 mg/L Pb(NO3)2 via drinking water, and non-Pb exposed group was supplied with plain drinking water during 7 weeks prolonged in vivo study. The accumulation of Pb in blood, feces, renal, and hepatic tissues and its pathological damages were analyzed. The effect of Pb toxicity on the antioxidant enzyme capabilities in blood, serum, as well as, on levels of essential elements in tissues was also calculated. Moreover, KLDS 1.0344 displayed remarkable Pb binding capacity 72.34% and Pb tolerance (680 mg/L). Oral administration of both non- and PRS- encapsulated KLDS 1.0344 significantly provided protection against induced chronic Pb toxicity by increasing fecal Pb levels (445.65 ± 22.28 μg/g) and decreasing Pb in the blood up to 137.63 ± 2.43 μg/L, respectively. KLDS 1.0344 microencapsulated with PRS also relieved the renal and hepatic pathological damages and improved the antioxidant index by inhibiting changes in concentrations of glutathione peroxidase, glutathione, superoxide dismutase, malondialdehyde, and activated oxygen species, which were affected by the Pb exposure. Overall, our results suggested that L. plantarum KLDS 1.0344 either in free or encapsulated forms hold the potentiality to deliver a dietetic stratagem against Pb lethality

    Ultrasound-Assisted Preparation of Brazil Nut Oil-in-Water Emulsions Stabilized by Arabic Gum

    Get PDF
     The objective of this work is to evaluate the stability of Brazil nut oil emulsions with gum Arabic using ultrasound-assisted homogenization. The emulsions were prepared in a completely randomized design varying the time (2 and 4 min) and the ultrasound power (30 and 40%). The physicochemical properties of the emulsions (pH, conductivity, turbidity, zeta potential, surface tension, rheology and optical microscopy) were evaluated after the homogenization process and 4 hours later. The results showed that more energetic homogenization processes (longer duration and higher ultrasound power) favored the physicochemical properties, keeping the emulsions more stable. Thus, Brazil nut oil emulsions prepared with ultrasound-assisted showed good physic-chemical characteristics that can guarantee good emulsion stability during spray drying, guaranteeing efficiency and protection of the physical and chemical properties of the Brazil nut oil

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    WITHDRAWN: Short-term effect of salinity (NaCl) on the anaerobic metabolism of phosphorus-accumulating organisms (PAO) in enriched bacterial culture

    Get PDF
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolic

    A projected Hessian Gauss-Newton algorithm for solving systems of nonlinear equations and inequalities

    No full text
    Solving systems of nonlinear equations and inequalities is of critical importance in many engineering problems. In general, the existence of inequalities in the problem adds to its difficulty. We propose a new projected Hessian Gauss-Newton algorithm for solving general nonlinear systems of equalities and inequalities. The algorithm uses the projected Gauss-Newton Hessian in conjunction with an active set strategy that identifies active inequalities and a trust-region globalization strategy that ensures convergence from any starting point. We also present a global convergence theory for the proposed algorithm

    Interspecies comparison of probiotics isolated from different animals

    No full text
    Aim: The aim of the current study was to isolate and identify naturally occurring probiotic Lactobacillus species in different animals with the different environmental background including fish, and farm animals to investigate interspecies differences in probiotics on the species level. Materials and Methods: A total of 44 fecal and milk samples were collected under aseptic conditions from cattle, buffalo, camel, sheep, goats, and fish. The samples were cultured, and the isolated strains were confirmed biochemically and molecularly using 16S rRNA multiplex polymerase chain reaction (PCR) analysis following DNA extraction from the bacterial isolates. Results: A total of 31 isolates identified as lactobacilli were isolated from cattle milk, goat feces, sheep feces, fish feces, buffalo milk, camel milk, and goats' milk. Lactobacillus species were identified based on the size of the PCR product. The results showed that different species were different in their lactobacilli content. At the same time, there were some differences between individuals of the same species. Conclusion: The diversity of probiotic strains isolated from different animal species implies different types of benefits to the host. Although it would be both money - and time-consuming research, discovering the benefit of each of these strains may provide very important information for the health of both human and animal. Furthermore, transferring these beneficial effects either to individuals within the same species or between different species would be of great importance

    Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds

    No full text
    Background: Pectin has been used as a carrier for the protection and targeted delivery of bioactive compounds and for increasing their shelf life and stability. Nano-encapsulation process is one of the techniques that has been used for the effective protection of bioactive compounds. Scope and approach: This review aims to describe the different sources and characterization of pectin along with various encapsulation methods of different bioactive compounds. Furthermore, the focus is on the application of nano-encapsulation pectin for the entrapment of bioactive compounds. Key findings and conclusions: Pectin can be used for nano-encapsulation, where nano-capsules can be formed through different methods i.e. spray drying, emulsion and through the formation of hydrogel, liposomes, and nanocomplexes. Moreover, the use of pectin in combination with other compounds such as proteins and lipids were found to be the most promising wall material for the bioactive compounds.Fil: Rehman, Abdur. Jiangnan University; ChinaFil: Ahmad, Talha. University of Agriculture; PakistánFil: Aadil, Rana Muhammad. University of Agriculture; PakistánFil: Spotti, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología de los Alimentos; ArgentinaFil: Bakry, Amr M.. Huazhong Agricultural University; ChinaFil: Khan, Imran Mahmood. Jiangnan University; ChinaFil: Zhao, Li. Jiangnan University; ChinaFil: Riaz, Tahreem. Jiangnan University; ChinaFil: Tong, Qunyi. Jiangnan University; Chin

    Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: synthesis, characterization, antimicrobial efficacy, and toxicological assessment

    No full text
    Abstract The emergence of antimicrobial resistance in foodborne bacterial pathogens has raised significant concerns in the food industry. This study explores the antimicrobial potential of biosynthesized silver nanoparticles (AgNPs) derived from Agaricus bisporus (Mushroom) against foodborne bacterial pathogens. The biosynthesized AgNPs were characterized using various techniques, including UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution scanning electron microscopy with energy dispersive X-ray spectroscopy, dynamic light scattering, and zeta potential analysis. The antibacterial activity of the AgNPs was tested against a panel of foodborne bacterial strains, and their cytotoxicity was evaluated on normal human skin fibroblasts. Among the tested strains, Pseudomonas aeruginosa ATCC 27853 showed the highest sensitivity with an inhibition zone diameter (IZD) of 48 mm, while Klebsiella quasipneumoniae ATTC 700603 and Bacillus cereus ATCC 11778 displayed the highest resistance with IZDs of 20 mm. The silver cations released by AgNPs demonstrated strong bactericidal effects against both Gram-positive (G + ve) and Gram-negative (G − ve) bacteria, as evidenced by the minimum inhibitory concentration/minimum bactericidal concentration (MBC/MIC) ratio. Moreover, cytotoxicity testing on normal human skin fibroblasts (HSF) indicated that AgNPs derived from the mushroom extract were safe, with a cell viability of 98.2%. Therefore, AgNPs hold promise as an alternative means to inhibit biofilm formation in the food industry sector
    corecore