27 research outputs found

    Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges

    Get PDF
    The charge/discharge characteristics of lithium ion batteries at low temperature (LT = -20 ??C) are enhanced by using ethylene carbonate (EC)-based electrolytes with the help of assistant solvents of nitriles. Conventional liquid electrolytes (e.g. a mixture of EC and dimethyl carbonate (DMC), abbreviated as LED) cannot support a satisfactory capacity at low temperature as well as at high rates even if electric vehicles require low-temperature operation. Introducing propionitrile or butyronitrile (Pn or Bn) into LED (resulting in LEDPn or LEDBn) as a co-solvent increases significantly the high-rate capacities at -20??C. For example, LEDPn delivers 62% of the available capacity at 1 C and 46% at 3 C with a 2.7 V cut-off while the control LED provides just 6% and 4% at the same rates. Successful operation at -20??C with nitrile-assistant electrolytes results from high ionic conductivity, low viscosity and freezing point depression caused by the eutectic behavior of the carbonates (EC/DMC) and Pn. Based on the phase diagram of Pn with EC/DMC, we expect a meaningful battery operation up to -110??C, probably lower, at the eutectic composition.close0

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V.Peer reviewe

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Antitumor Activity of Novel Signal Transducer and Activator of Transcription 3 Inhibitors on Retinoblastoma

    No full text
    Signal transducer and activator of transcription 3 (STAT3) is a plausible therapeutic target in the treatment of retinoblastoma, the most common intraocular malignant tumor in children. STAT3, a transcription factor of several genes related to tumorigenesis, is activated in retinoblastoma tumors as well as other cancers. In this study, we investigated the structure-activity relationship of a library of STAT3 inhibitors, including a novel series of derivatives of the previously reported compound with a Michael acceptor (compound 1). We chose two novel STAT3 inhibitors, compounds 11 and 15, from the library based on their inhibitory effects on the phosphorylation and transcription activity of STAT3. These STAT3 inhibitors effectively suppressed the phosphorylation of STAT3 and inhibited the expression of STAT3-related genes CCND1, CDKN1A, BCL2, BCL2L1, BIRC5, MYC, MMP1, MMP9, and VEGFA. Intraocularly administered STAT3 inhibitors decreased the degree of tumor formation in the vitreous cavity of BALB/c nude mice of an orthotopic transplantation model. It is noteworthy that compounds 11 and 15 did not induce in vitro and in vivo toxicity on retinal constituent cells and retinal tissues, respectively, despite their potent antitumor effects. We suggest that these novel STAT3 inhibitors be used in the treatment of retinoblastoma. SIGNIFICANCE STATEMENT The current study suggests the novel STAT3 inhibitors with Michael acceptors possess antitumor activity on retinoblastoma, the most common intraocular cancer in children. Based on detailed structure-activity relationship studies, we found a 4-fluoro and 3-trifluoro analog (compound 11) and a monochloro analog (compound 15) of the parental compound (compound 1) inhibited STAT3 phosphorylation, leading to suppressed retinoblastoma in vitro and in vivo.Y

    Is it necessary to actively remove stone fragments during retrograde intrarenal surgery?

    No full text
    Purpose: Based on the experiences of our center, we sought to verify the necessity of actively removing stones during retrograde intrarenal surgery (RIRS) for the management of renal stones. Materials and Methods: From March 2010 to March 2015, 248 patients underwent RIRS at our center. We classified these patients into 2 groups according to the performance of active stone removal; group A (n=172) included the patients whose stones were actively removed using a stone basket, and group B (n=76) included the patients whose stones were fragmented with laser lithotripsy without active removal of the fragments. We retrospectively compared the operation time, success rate, and complication rate between the 2 groups. Results: There were no significant differences between groups A and B in terms of mean age (56.1 years vs. 58.6 years), male to female ratio (115:57 vs. 46:30), mean body mass index (24.5 kg/m2 vs. 25.0 kg/m2 ), mean preoperative size of stone (11.1 mm vs. 11.1 mm), the ratio of unilateral and bilateral stones (136:36 vs. 64:12), success rate (89.0% vs. 86.8%), operation time (82.5 minutes vs. 82.1 minutes), overall complication rate (9.9% vs. 11.8%), incidence of febrile urinary tract infection (6.4% vs. 2.6%), gross hematuria (1.7% vs. 2.6%), or postoperative de novo hydronephrosis (2.9% vs. 5.3%). Conclusions: This study demonstrated that during RIRS, fragmentation only, without the active removal of stones, is a safe and effective technique in which the surgical outcomes are comparable to those of procedures involving the active removal of stones

    Tailoring Solution-Processable Li Argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries

    No full text
    Owing to their high Li+ conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of Li6PS5X (X = Cl, Br, I) with insufficiently high Li+ conductivities (similar to 10(-4) S cm(-1)). Herein, we report the highest Li+ conductivity of 0.54 mS cm(-1) at 30 degrees C (Li6.5P0.5Ge0.5S5I) for solution-processable iodine-based Li argyrodites. A comparative investigation of three iodine-based argyrodites of unsubstituted and Ge- and Sn-substituted solution-processed Li6PS5I with varied heat-treatment temperature elucidates the effect of microstructural evolution on Li+ conductivity. Notably, local nanostructures consisting of argyrodite nanocrystallites in solution-processed Li6.5P0.5Ge0.5S5I have been directly captured by cryogenic transmission electron microscopy, which is a first for sulfide solid electrolyte materials. Specifically, the promising electrochemical performances of all-solid-state batteries at 30 degrees C employing LiCoO2 electrodes tailored by the infiltration of Li6.5P0.5Ge0.5S5I-ethanol solutions are successfully demonstrated

    A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes

    No full text
    The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 μm (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.1
    corecore