33 research outputs found

    Domain wall generation by fermion self-interaction and light particles

    Get PDF
    A possible explanation for the appearance of light fermions and Higgs bosons on the four-dimensional domain wall is proposed. The mechanism of light particle trapping is accounted for by a strong self-interaction of five-dimensional pre-quarks. We obtain the low-energy effective action which exhibits the invariance under the so called \tau-symmetry. Then we find a set of vacuum solutions which break that symmetry and the five-dimensional translational invariance. One type of those vacuum solutions gives rise to the domain wall formation with consequent trapping of light massive fermions and Higgs-like bosons as well as massless sterile scalars, the so-called branons. The induced relations between low-energy couplings for Yukawa and scalar field interactions allow to make certain predictions for light particle masses and couplings themselves, which might provide a signature of the higher dimensional origin of particle physics at future experiments. The manifest translational symmetry breaking, eventually due to some gravitational and/or matter fields in five dimensions, is effectively realized with the help of background scalar defects. As a result the branons acquire masses, whereas the ratio of Higgs and fermion (presumably top-quark) masses can be reduced towards the values compatible with the present-day phenomenology. Since the branons do not couple to fermions and the Higgs bosons do not decay into branons, the latter ones are essentially sterile and stable, what makes them the natural candidates for the dark matter in the Universe.Comment: 34 pages, 2 figures, JHEP style,few important refs. adde

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Higgs Boson Studies at the Tevatron

    Get PDF
    We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90--200 GeV/c2/c^2 produced in the gluon-gluon fusion, WHWH, ZHZH, ttˉHt{\bar{t}}H, and vector boson fusion processes, and decaying in the HbbˉH\rightarrow b{\bar{b}}, HW+WH\rightarrow W^+W^-, HZZH\rightarrow ZZ, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow \gamma\gamma modes. The data correspond to integrated luminosities of up to 10 fb1^{-1} and were collected at the Fermilab Tevatron in ppˉp{\bar{p}} collisions at s=1.96\sqrt{s}=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2c^2. The local significance corresponds to 3.0 standard deviations at mH=125m_H=125 GeV/c2c^2, consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for HbbˉH \to b\bar{b}, HW+WH \to W^+W^-, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow\gamma\gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c2c^2
    corecore