1,289 research outputs found

    A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses

    Get PDF
    Background: Hydrocephalus in Friesian horses is a developmental disorder that often results in stillbirth of affected foals and dystocia in dams. The occurrence is probably related to a founder effect and inbreeding in the population. The aim of our study was to find genomic associations, to investigate the mode of inheritance, to allow a DNA test for hydrocephalus in Friesian horses to be developed. In case of a monogenic inheritance we aimed to identify the causal mutation. Results: A genome-wide association study of hydrocephalus in 13 cases and 69 controls using 29,720 SNPs indicated the involvement of a region on ECA1 (P T corresponding to XP_001491595 p.Gln475* was identical to a B3GALNT2 mutation identified in a human case of muscular dystrophy-dystroglycanopathy with hydrocephalus. All 16 available cases and none of the controls were homozygous for the mutation, and all 17 obligate carriers (= dams of cases) were heterozygous. A random sample of the Friesian horse population (n = 865) was tested for the mutation in a commercial laboratory. One-hundred and forty-seven horses were carrier and 718 horses were homozygous for the normal allele; the estimated allele frequency in the Friesian horse population is 0.085. Conclusions: Hydrocephalus in Friesian horses has an autosomal recessive mode of inheritance. A nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* in B3GALNT2 (1: 75,859,296-75,909,376) is concordant with hydrocephalus in Friesian horses. Application of a DNA test in the breeding programme will reduce the losses caused by hydrocephalus in the Friesian horse population

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    Get PDF
    ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot

    Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions

    Get PDF
    The phase diagram of quark gluon plasma (QGP) formed at a very early stage just after the heavy ion collision is obtained by using a holographic dual model for the heavy ion collision. In this dual model colliding ions are described by the charged shock gravitational waves. Points on the phase diagram correspond to the QGP or hadronic matter with given temperatures and chemical potentials. The phase of QGP in dual terms is related to the case when the collision of shock waves leads to formation of trapped surface. Hadronic matter and other confined states correspond to the absence of trapped surface after collision. Multiplicity of the ion collision process is estimated in the dual language as area of the trapped surface. We show that a non-zero chemical potential reduces the multiplicity. To plot the phase diagram we use two different dual models of colliding ions, the point and the wall shock waves, and find qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte

    Computational personality recognition in social media

    Get PDF
    A variety of approaches have been recently proposed to automatically infer users' personality from their user generated content in social media. Approaches differ in terms of the machine learning algorithms and the feature sets used, type of utilized footprint, and the social media environment used to collect the data. In this paper, we perform a comparative analysis of state-of-the-art computational personality recognition methods on a varied set of social media ground truth data from Facebook, Twitter and YouTube. We answer three questions: (1) Should personality prediction be treated as a multi-label prediction task (i.e., all personality traits of a given user are predicted at once), or should each trait be identified separately? (2) Which predictive features work well across different on-line environments? (3) What is the decay in accuracy when porting models trained in one social media environment to another

    Differential branching fraction and angular analysis of Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- decays

    Get PDF
    The differential branching fraction of the rare decay Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- is measured as a function of q2q^{2}, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 \mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is observed in the q2q^2 region below the square of the J/ψJ/\psi mass. Integrating over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λb0J/ψΛ\Lambda^{0}_{b} \rightarrow J/\psi \Lambda, respectively. In the q2q^2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (AFBlA^{l}_{\rm FB}) and hadron (AFBhA^{h}_{\rm FB}) systems are measured for the first time. In the range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} = -0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} = -0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    The Concise Guide to PHARMACOLOGY 2015/16:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells
    corecore