459 research outputs found

    Prediction of Severe Complications and Mortality in Patients Admitted to a Coronary Care Unit

    Get PDF
    The aim of this study was to design a statistical model which will predict death or life-threatening complications in patients admitted to Coronary Care Unit using data which is available at the time of presentation. The study included 3721 consecutive admissions over a period four year period. Predictive models were developed using logistic regression analysis (with data from 1000 patients) and their performance was assessed using receiver operating characteristic (ROC) curve analysis. The most useful model included nine data items and was tested on data from 2721 patients. These could be divided into four groups according to their calculated probability of developing a serious complication. The lowest risk group had a mortality of 0.05%, compared with 3.5%, 6.4% and 18.1% respectively in the higher risk groups (p1000 U/1) in the four groups was 14.1%, 21.2%, 46.9% and 51.5% respectively (p<0.001). The overall complication rates were 16.9%, 35.4%, 75.4% and 71.8% respectively (p<0.001)

    Is The Amphibian Tree of Life really fatally flawed?

    Get PDF
    Wiens (2007 , Q. Rev. Biol. 82, 55–56) recently published a severe critique of Frost et al.'s (2006, Bull. Am. Mus. Nat. Hist. 297, 1–370) monographic study of amphibian systematics, concluding that it is “a disaster” and recommending that readers “simply ignore this study”. Beyond the hyperbole, Wiens raised four general objections that he regarded as “fatal flaws”: (1) the sampling design was insufficient for the generic changes made and taxonomic changes were made without including all type species; (2) the nuclear gene most commonly used in amphibian phylogenetics, RAG-1, was not included, nor were the morphological characters that had justified the older taxonomy; (3) the analytical method employed is questionable because equally weighted parsimony “assumes that all characters are evolving at equal rates”; and (4) the results were at times “clearly erroneous”, as evidenced by the inferred non-monophyly of marsupial frogs. In this paper we respond to these criticisms. In brief: (1) the study of Frost et al. did not exist in a vacuum and we discussed our evidence and evidence previously obtained by others that documented the non-monophyletic taxa that we corrected. Beyond that, we agree that all type species should ideally be included, but inclusion of all potentially relevant type species is not feasible in a study of the magnitude of Frost et al. and we contend that this should not prevent progress in the formulation of phylogenetic hypotheses or their application outside of systematics. (2) Rhodopsin, a gene included by Frost et al. is the nuclear gene that is most commonly used in amphibian systematics, not RAG-1. Regardless, ignoring a study because of the absence of a single locus strikes us as unsound practice. With respect to previously hypothesized morphological synapomorphies, Frost et al. provided a lengthy review of the published evidence for all groups, and this was used to inform taxonomic decisions. We noted that confirming and reconciling all morphological transformation series published among previous studies needed to be done, and we included evidence from the only published data set at that time to explicitly code morphological characters (including a number of traditionally applied synapomorphies from adult morphology) across the bulk of the diversity of amphibians (Haas, 2003, Cladistics 19, 23–90). Moreover, the phylogenetic results of the Frost et al. study were largely consistent with previous morphological and molecular studies and where they differed, this was discussed with reference to the weight of evidence. (3) The claim that equally weighted parsimony assumes that all characters are evolving at equal rates has been shown to be false in both analytical and simulation studies. (4) The claimed “strong support” for marsupial frog monophyly is questionable. Several studies have also found marsupial frogs to be non-monophyletic. Wiens et al. (2005, Syst. Biol. 54, 719–748) recovered marsupial frogs as monophyletic, but that result was strongly supported only by Bayesian clade confidence values (which are known to overestimate support) and bootstrap support in his parsimony analysis was < 50%. Further, in a more recent parsimony analysis of an expanded data set that included RAG-1 and the three traditional morphological synapomorphies of marsupial frogs, Wiens et al. (2006, Am. Nat. 168, 579–596) also found them to be non-monophyletic. Although we attempted to apply the rule of monophyly to the naming of taxonomic groups, our phylogenetic results are largely consistent with conventional views even if not with the taxonomy current at the time of our writing. Most of our taxonomic changes addressed examples of non-monophyly that had previously been known or suspected (e.g., the non-monophyly of traditional Hyperoliidae, Microhylidae, Hemiphractinae, Leptodactylidae, Phrynobatrachus , Ranidae, Rana , Bufo ; and the placement of Brachycephalus within “ Eleutherodactylus ”, and Lineatriton within “ Pseudoeurycea ”), and it is troubling that Wiens and others, as evidenced by recent publications, continue to perpetuate recognition of non-monophyletic taxonomic groups that so profoundly misrepresent what is known about amphibian phylogeny. © The Willi Hennig Society 2007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74688/1/j.1096-0031.2007.00181.x.pd

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT≄5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    • 

    corecore