167 research outputs found

    A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina

    Get PDF
    Recent works suggest that one of the roles of gap junctions in sensory systems is to enhance their dynamic range by avoiding early saturation in the first processing stages. In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics. Our results show that for realistic values of Ih conductance the dynamic range is enhanced by rod-rod coupling, and that AII-AII coupling is less relevant to dynamic range amplification in comparison with receptor coupling. Furthermore, a plot of the retina output response versus input intensity for the optimal parameter configuration is well fitted by a power law with exponent . The results are consistent with predictions of more theoretical works and suggest that the earliest expression of gap junctions along the rod pathways, together with appropriate values of rod Ih conductance, has the highest impact on vertebrate retina dynamic range enhancement

    A Self-Organizing Algorithm for Modeling Protein Loops

    Get PDF
    Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies

    Bacteria are important dimethylsulfoniopropionate producers in coastal sediments

    Get PDF
    Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients, with roles in global sulfur cycling, atmospheric chemistry, signalling and, potentially, climate regulation. DMSP production was previously thought to be an oxic and photic process, mainly confined to the surface oceans. However, here we show that DMSP concentrations and DMSP/DMS synthesis rates were higher in surface marine sediment from e.g., saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and previously unknown DMSP-producers were identified. Most DMSP-producing isolates contained dsyB, but some alphaproteobacteria, gammaproteobacteria and actinobacteria utilised a methionine methylation pathway independent of DsyB, previously only associated with higher plants. These bacteria contained a methionine methyltransferase ‘mmtN’ gene - a marker for bacterial DMSP synthesis via this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all tested seawater samples and Tara Oceans bacterioplankton datasets, but were far more abundant in marine surface sediment. Approximately 108 bacteria per gram of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth’s surface, are environments with high DMSP and DMS productivity, and that bacteria are important producers within them

    DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution

    A Novel Secretory Poly-Cysteine and Histidine-Tailed Metalloprotein (Ts-PCHTP) from Trichinella spiralis (Nematoda)

    Get PDF
    BACKGROUND: Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1:2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe
    corecore