20 research outputs found

    Reactivity and Dynamics at Liquid Interfaces

    Full text link

    Downscaling the analysis of complex transmembrane signaling cascades to closed attoliter volumes.

    Get PDF
    Cellular signaling is classically investigated by measuring optical or electrical properties of single or populations of living cells. Here we show that ligand binding to cell surface receptors and subsequent activation of signaling cascades can be monitored in single, (sub-)micrometer sized native vesicles with single-molecule sensitivity. The vesicles are derived from live mammalian cells using chemicals or optical tweezers. They comprise parts of a cell's plasma membrane and cytosol and represent the smallest autonomous containers performing cellular signaling reactions thus functioning like minimized cells. Using fluorescence microscopies, we measured in individual vesicles the different steps of G-protein-coupled receptor mediated signaling like ligand binding to receptors, subsequent G-protein activation and finally arrestin translocation indicating receptor deactivation. Observing cellular signaling reactions in individual vesicles opens the door for downscaling bioanalysis of cellular functions to the attoliter range, multiplexing single cell analysis, and investigating receptor mediated signaling in multiarray format

    Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone.

    No full text
    The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence
    corecore