717 research outputs found
Multipole interaction between atoms and their photonic environment
Macroscopic field quantization is presented for a nondispersive photonic
dielectric environment, both in the absence and presence of guest atoms.
Starting with a minimal-coupling Lagrangian, a careful look at functional
derivatives shows how to obtain Maxwell's equations before and after choosing a
suitable gauge. A Hamiltonian is derived with a multipolar interaction between
the guest atoms and the electromagnetic field. Canonical variables and fields
are determined and in particular the field canonically conjugate to the vector
potential is identified by functional differentiation as minus the full
displacement field. An important result is that inside the dielectric a dipole
couples to a field that is neither the (transverse) electric nor the
macroscopic displacement field. The dielectric function is different from the
bulk dielectric function at the position of the dipole, so that local-field
effects must be taken into account.Comment: 17 pages, to be published in Physical Review
Prompt atmospheric neutrinos and muons: dependence on the gluon distribution function
We compute the next-to-leading order QCD predictions for the vertical flux of
atmospheric muons and neutrinos from decays of charmed particles, for different
PDF's (MRS-R1, MRS-R2, CTEQ-4M and MRST) and different extrapolations of these
at small partonic momentum fraction x. We find that the predicted fluxes vary
up to almost two orders of magnitude at the largest energies studied, depending
on the chosen extrapolation of the PDF's. We show that the spectral index of
the atmospheric leptonic fluxes depends linearly on the slope of the gluon
distribution function at very small x. This suggests the possibility of
obtaining some bounds on this slope in ``neutrino telescopes'', at values of x
not reachable at colliders, provided the spectral index of atmospheric leptonic
fluxes could be determined.Comment: 20 pages including 8 figure
A Taylor Model Based Description of the proof stress of magnesium AZ31 during hot working
A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path
Study of KS KL Coupled Decays and KL -Be Interactions with the CMD-2 Detector at VEPP-2M Collider
The integrated luminosity about 4000 inverse nanobarn of around phi meson
mass ( 5 millions of phi mesons) has been collected with the CMD-2 detector at
the VEPP-2M collider. A latest analysis of the KS KL coupled decays based on 30
% of available data is presented in this paper.
The KS KL pairs from phi meson decays were reconstructed in the drift chamber
when both kaons decayed into two charged particles. From a sample of 1423
coupled decays a selection of candidates to the CP violating KL into pi+ pi-
decay was performed. CP violating decays were not identified because of the
domination of events with a KL regenerating at the Be beam pipe into KS and a
background from KL semileptonic decays.
The regeneration cross section of 110 MeV/c KL mesons was found to be 53 +-
17 mb in agreement with theoretical expectations. The angular distribution of
KS mesons after regeneration and the total cross section of KL for Be have been
measured.Comment: 14 pages, 8 figure
Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity
A formalism for studying spontaneous decay of an excited two-level atom in
the presence of dispersing and absorbing dielectric bodies is developed. An
integral equation, which is suitable for numerical solution, is derived for the
atomic upper-state-probability amplitude. The emission pattern and the power
spectrum of the emitted light are expressed in terms of the Green tensor of the
dielectric-matter formation including absorption and dispersion. The theory is
applied to the spontaneous decay of an excited atom at the center of a
three-layered spherical cavity, with the cavity wall being modeled by a
band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are
studied, the latter with special emphasis on the cases where the atomic
transition is (i) in the normal-dispersion zone near the medium resonance and
(ii) in the anomalous-dispersion zone associated with the band gap. In a
single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state
population are derived, which are in good agreement with the exact numerical
results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde
A lattice model for the kinetics of rupture of fluid bilayer membranes
We have constructed a model for the kinetics of rupture of membranes under
tension, applying physical principles relevant to lipid bilayers held together
by hydrophobic interactions. The membrane is characterized by the bulk
compressibility (for expansion), the thickness of the hydrophobic part of the
bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of
the lipids. The model is a lattice model which incorporates strain relaxation,
and considers the nucleation of pores at constant area, constant temperature,
and constant particle number. The particle number is conserved by allowing
multiple occupancy of the sites. An equilibrium ``phase diagram'' is
constructed as a function of temperature and strain with the total pore surface
and distribution as the order parameters. A first order rupture line is found
with increasing tension, and a continuous increase in proto-pore concentration
with rising temperature till instability. The model explains current results on
saturated and unsaturated PC lipid bilayers and thicker artificial bilayers
made of diblock copolymers. Pore size distributions are presented for various
values of area expansion and temperature, and the fractal dimension of the pore
edge is evaluated.Comment: 15 pages, 8 figure
Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs
We introduce a nonperturbative interaction for light-cone fluctuations
containing quarks and gluons. The interaction squeezes the transverse
size of these fluctuations in the photon and one does not need to simulate this
effect via effective quark masses. The strength of this interaction is fixed by
data. Data on diffractive dissociation of hadrons and photons show that the
nonperturbative interaction of gluons is much stronger. We fix the parameters
for the nonperturbative quark-gluon interaction by data for diffractive
dissociation to large masses (triple-Pomeron regime). This allows us to predict
nuclear shadowing for gluons which turns out to be not as strong as
perturbative QCD predicts. We expect a delayed onset of gluon shadowing at shadowing of quarks. Gluon shadowing turns out to be nearly scale
invariant up to virtualities due to presence of a semihard
scale characterizing the strong nonperturbative interaction of gluons. We use
the same concept to improve our description of gluon bremsstrahlung which is
related to the distribution function for a quark-gluon fluctuation and the
interaction cross section of a fluctuation with a nucleon. We expect
the nonperturbative interaction to suppress dramatically the gluon radiation at
small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and
Fig. 6 are added as well as a few reference
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
