717 research outputs found

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Prompt atmospheric neutrinos and muons: dependence on the gluon distribution function

    Full text link
    We compute the next-to-leading order QCD predictions for the vertical flux of atmospheric muons and neutrinos from decays of charmed particles, for different PDF's (MRS-R1, MRS-R2, CTEQ-4M and MRST) and different extrapolations of these at small partonic momentum fraction x. We find that the predicted fluxes vary up to almost two orders of magnitude at the largest energies studied, depending on the chosen extrapolation of the PDF's. We show that the spectral index of the atmospheric leptonic fluxes depends linearly on the slope of the gluon distribution function at very small x. This suggests the possibility of obtaining some bounds on this slope in ``neutrino telescopes'', at values of x not reachable at colliders, provided the spectral index of atmospheric leptonic fluxes could be determined.Comment: 20 pages including 8 figure

    A Taylor Model Based Description of the proof stress of magnesium AZ31 during hot working

    Full text link
    A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path

    Study of KS KL Coupled Decays and KL -Be Interactions with the CMD-2 Detector at VEPP-2M Collider

    Full text link
    The integrated luminosity about 4000 inverse nanobarn of around phi meson mass ( 5 millions of phi mesons) has been collected with the CMD-2 detector at the VEPP-2M collider. A latest analysis of the KS KL coupled decays based on 30 % of available data is presented in this paper. The KS KL pairs from phi meson decays were reconstructed in the drift chamber when both kaons decayed into two charged particles. From a sample of 1423 coupled decays a selection of candidates to the CP violating KL into pi+ pi- decay was performed. CP violating decays were not identified because of the domination of events with a KL regenerating at the Be beam pipe into KS and a background from KL semileptonic decays. The regeneration cross section of 110 MeV/c KL mesons was found to be 53 +- 17 mb in agreement with theoretical expectations. The angular distribution of KS mesons after regeneration and the total cross section of KL for Be have been measured.Comment: 14 pages, 8 figure

    Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity

    Full text link
    A formalism for studying spontaneous decay of an excited two-level atom in the presence of dispersing and absorbing dielectric bodies is developed. An integral equation, which is suitable for numerical solution, is derived for the atomic upper-state-probability amplitude. The emission pattern and the power spectrum of the emitted light are expressed in terms of the Green tensor of the dielectric-matter formation including absorption and dispersion. The theory is applied to the spontaneous decay of an excited atom at the center of a three-layered spherical cavity, with the cavity wall being modeled by a band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are studied, the latter with special emphasis on the cases where the atomic transition is (i) in the normal-dispersion zone near the medium resonance and (ii) in the anomalous-dispersion zone associated with the band gap. In a single-resonance approximation, conditions of the appearance of Rabi oscillations and closed solutions to the evolution of the atomic state population are derived, which are in good agreement with the exact numerical results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde

    A lattice model for the kinetics of rupture of fluid bilayer membranes

    Full text link
    We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion), the thickness of the hydrophobic part of the bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium ``phase diagram'' is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first order rupture line is found with increasing tension, and a continuous increase in proto-pore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated PC lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.Comment: 15 pages, 8 figure

    Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs

    Get PDF
    We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. The qˉq\bar qq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron regime). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of gluon shadowing at x102x \leq 10^{-2} shadowing of quarks. Gluon shadowing turns out to be nearly scale invariant up to virtualities Q24GeV2Q^2\sim 4 GeV^2 due to presence of a semihard scale characterizing the strong nonperturbative interaction of gluons. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of a qˉqG\bar qqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and Fig. 6 are added as well as a few reference

    Weak capture of protons by protons

    Get PDF
    The cross section for the proton weak capture reaction 1H(p,e+νe)2H^1H(p,e^+\nu_e)^2H is calculated with wave functions obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller matrix element of tritium β\beta decay in model calculations using trinucleon wave functions from these interactions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current contribution to the pp capture is given. Its inherent model dependence is in fact found to be very weak. The overlap integral Λ2(E=0)\Lambda^2(E=0) for the pp capture is predicted to be in the range 7.05--7.06, including the axial two-body current contribution, for all interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore