101 research outputs found

    Anisotropic 2D diffusive expansion of ultra-cold atoms in a disordered potential

    Get PDF
    We study the horizontal expansion of vertically confined ultra-cold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30{\deg} with respect to the horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane. We observe diffusion leading to non-Gaussian density profiles. Diffusion coefficients, extracted from the experimental results, show anisotropy and strong energy dependence, in agreement with numerical calculations

    Anderson localization in Bose-Einstein condensates

    Full text link
    The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials have opened a new window for studying fundamental phenomena related to disorder. In particular, we point our attention to recent experimental studies on Anderson localization and on the interplay of disorder and weak interactions. These realize a very promising starting point for a deeper understanding of the complex behaviour of interacting, disordered systems.Comment: 15 pages review, to appear in Reports on Progress in Physic

    Transport regimes of cold gases in a two-dimensional anisotropic disorder

    Full text link
    We numerically study the dynamics of cold atoms in a two-dimensional disordered potential. We consider an anisotropic speckle potential and focus on the classical regime, which is relevant to some recent experiments. First, we study the behavior of particles with a fixed energy and identify different transport regimes. For low energy, the particles are classically localized due to the absence of a percolating cluster. For high energy, the particles undergo normal diffusion and we show that the diffusion constants scale algebraically with the particle energy, with an anisotropy factor which significantly differs from that of the disordered potential. For intermediate energy, we find a transient sub-diffusive regime, which is relevant to the time scale of typical experiments. Second, we study the behavior of a cold-atomic gas with an arbitrary energy distribution, using the above results as a groundwork. We show that the density profile of the atomic cloud in the diffusion regime is strongly peaked and, in particular, that it is not Gaussian. Its behavior at large distances allows us to extract the energy-dependent diffusion constants from experimental density distributions. For a thermal cloud released into the disordered potential, we show that our numerical predictions are in agreement with experimental findings. Not only does this work give insights to recent experimental results, but it may also serve interpretation of future experiments searching for deviation from classical diffusion and traces of Anderson localization.Comment: 19 pages, 16 figure

    Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

    Get PDF
    The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component

    Three-dimensional localization of ultracold atoms in an optical disordered potential

    Full text link
    We report a study of three-dimensional (3D) localization of ultracold atoms suspended against gravity, and released in a 3D optical disordered potential with short correlation lengths in all directions. We observe density profiles composed of a steady localized part and a diffusive part. Our observations are compatible with the self-consistent theory of Anderson localization, taking into account the specific features of the experiment, and in particular the broad energy distribution of the atoms placed in the disordered potential. The localization we observe cannot be interpreted as trapping of particles with energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial manuscript (unchanged compared to version 1); The published version is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Dissipative cooling of spin chains by a bath of dipolar particles

    No full text
    We consider a spin chain of fermionic atoms in an optical lattice, interacting with each other by super-exchange interactions. We theoretically investigate the dissipative evolution of the spin chain when it is coupled by magnetic dipole-dipole interaction to a bath consisting of atoms with a strong magnetic moment. Dipolar interactions with the bath allow for a dynamical evolution of the collective spin of the spin chain. Starting from an uncorrelated thermal sample, we demonstrate that the dissipative cooling produces highly entangled low energy spin states of the chain in a timescale of a few seconds. In practice, the lowest energy singlet state driven by super-exchange interactions is efficiently produced. This dissipative approach is a promising alternative to cool spin-full atoms in spin-independent lattices. It provides direct thermalization of the spin degrees of freedom, while traditional approaches are plagued by the inherently long timescale associated to the necessary spatial redistribution of spins under the effect of super-exchange interactions
    corecore