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The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermody-

namic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the

derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work

of Goodman. The goal of this discussion is to show that a Gaussian approximation of this func-

tion, proposed in some recent papers, is inconsistent with the general background of laser speckle

theory. In this context we also point out that the concept of a quasi-three dimensional speckle,

which appears due to an extension of the autocorrelation function in the longitudinal direction of a

transverse 2d speckle, is not applicable for the true 3d speckle, since it requires an additional space

dimension. Then we propose a possible experimental realization for an isotropic 3d laser speckle

potential and derive its corresponding autocorrelation function. Using a Fourier transform of that

function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate

as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution

of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid den-

sity obtained earlier within the treatment of Landau. This physically transparent derivation shows

that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is

responsible for the normalfluid component.

PACS numbers: 67.85.Hj, 46.65.+g

I. INTRODUCTION

The study of interacting bosonic atoms in a disordered
potential landscape, called in the literature as “dirty bo-
son problem“ [1], has originally been introduced in the
context of the motion of superfluid helium in porous Vy-
cor glass [2]. Due to the frozen environment, disorder
ensembles averages of physical observables have to be de-
termined, which depend on many system parameters as,
for instance, the strength of a repulsive interaction be-
tween two particles of the Bose gas as well as the strength
and the correlation length which characterize the disorder
potential. The main and intriguing part of the problem
is the competition between the repulsive two-particle in-
teraction and the localization property of disorder. From
a theoretical point of view, the disorder potential was in-
troduced by investigating the Anderson localization phe-
nomenon for fermions [3]. Much attention has recently
been paid for the Anderson localization and the propaga-
tion of bosonic matter waves in random external poten-
tials [4]. Experimentally, the bosonic matter waves have
been studied in the random potential produced either by
laser speckles [5] or by an incommensurable optical lat-
tice [6]. Whereas the laser speckle disorder potential is
created by a laser beam scattered from a diffusive glass

plate [7], the incommensurable optical lattice is produced
through two interfering laser beams with incommensu-
rable wavelengths. However, one needs to remark that
such lattices exhibit certain pathological features, which
do not occur in genuinely random lattices, such as a tran-
sition between localized and delocalized states, even in
one spatial dimension [8]. In that sense the quasi-periodic
lattices should be considered as to be quasi-random ones.
Recent progress in different experimental realizations of
laser speckle disorder is reported in Refs. [9, 10].
According to the laser speckle theory described in the

seminal work of Goodman [7, 11], the monochromatic
light reflected from a rough surface on the scale of an op-
tical wavelength yields many independent dephased but
coherent wavelets which interfere at a distance, which is
essentially larger than the wavelength. This results in
a granular pattern of intensity that is called Gaussian
speckle as the real and imaginary parts of the field am-
plitude form a circular complex Gaussian distribution at
any fixed spatial point. Details of the speckle formation
will be considered in the next section of the paper. Here,
we note that this distribution consists of the first-order
statistics of the speckle disorder, while the second-order
statistics of disorder is represented by its autocorrelation
function.
In order to understand the underlying physics of laser
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speckles, let us briefly describe their formation in 2d. Ob-
ject waves are fields, which are a result of the incident po-
larized monochromatic field reflection from a rough sur-
face, and they are described in a plane α, β immediately
adjacent to the surface in terms of a complex function
a(α, β) [12]. The Huygens-Fresnel principle establishes in
the Fresnel approximation a relation between these ob-
ject waves a(α, β) and the complex waves A(x, y) in the
observation plane x, y through an integral which resem-
bles a Fourier transformation. Hence, the wave A(x, y) is
a result of the interference of all object waves in the x, y
plane. As in the Fresnel approximation one assumes the
condition z ≫ (α2 + β2)max/λ, where z denotes the dis-
tance between the object wave α, β plane as well as the
observation wave x, y plane and λ denotes the light wave-
length, the waves A(x, y) are called to be in far field [12].

In the Fourier mapping of object waves for the forma-
tion of far fields both the form and the finite size of the
diffraction aperture A in the α, β plane plays a central
role. It determines the form of the autocorrelation func-
tion as well as its correlation length, which characterizes
the average size of the speckle, i.e. a grain of the above
mentioned intensity pattern. Typically, the expression
for the autocorrelation function consists of a constant and
a spatially varying part. The latter, which is of interest
for various speckle applications, has one central maxi-
mum and a set of side maxima of decaying height, which
are separated from each other by zeros. This analyti-
cal structure is principal in the theory of laser speckles,
since it is the result of the Fourier transformation of the
finite-size diffraction aperture A. Due to the existence
of zeros, it can qualitatively not be approximated by a
function of a Gaussian form as was assumed and even nu-
merically derived in Refs. [13–15]. It is interesting that
the experiment demonstrates an ambiguity in the follow-
ing respect: whereas the function with zeros is exploited
in the papers [5, 16, 17], the spatial autocorrelation func-
tion is fitted by a Gaussian in Refs. [9, 10, 18–21]. Calcu-
lating a standard deviation of the second-order moment
of the random intensity, it was shown in Ref. [22] that
for 1d the autocorrelation function derived in Ref. [7, 11]
can be well approximated by a Gaussian form. However,
a Fourier transform of this autocorrelation function, the
power spectral density, which is essential for the theory
of a Bose-Einstein condensate (BEC) in an external dis-
order potential, behaves, unlike the Gaussian function,
as the triangle function tri(x) = 1 − |x| for |x| ≤ 1 and
otherwise zero for any dimensionality. For 1d and 2d
this was shown by Goodman in Refs. [7, 11], the corre-
sponding 3d case is dealt with below in the text. This
triangle function makes the upper limit of the integration
in momentum space finite. For those reasons the recently
proposed Gaussian autocorrelation function for the laser
speckle is not suitable for a comprehensive description of
a BEC in laser speckle disorder.

The present paper is organized as follows. We start
with describing the basic principles of the laser speckle
theory in Sec. II. Following a scheme described in Refs. [7,

11], we will then derive in Sec. III the expressions for
the autocorrelation function of laser speckles and their
Fourier transforms ranging from 1d to 3d with special
emphasize on discussing both isotropic and anisotropic
cases. The scheme of the possible experimental realiza-
tion of the 3d isotropic speckle will be outlined in Sec. IV.
Note, however, that we consider in our paper a true 3d
speckle pattern, not a quasi-three dimensional one of a
transverse 2d speckle with a longitudinal depth in the au-
tocorrelation function as described in Ref. [23] and sec-
tion 4.4.3 of the Goodman book [11], which has been ap-
plied in many experiments (see, for instance, Ref. [22]).
This depth autocorrelation function concept assumes the
existence of an additional spatial direction for the rele-
vant speckle and can only be valid for 1d or 2d speckles.
As is further discussed in Refs. [11, 23], the depth size
is essentially larger than ones in other dimensions. Here
we consider a 3d volume speckle with compatible speckle
grain sizes in all spatial directions, which was already
simulated in Refs. [13, 14]. Since the existing speckle
patterns are experimentally produced mainly in a 2d ge-
ometry, we will propose a special scheme for its possible
realization in a 3d volume. In the subsequent Sec. V the
effect of a weak 3d isotropic speckle on various thermody-
namic properties of a dilute Bose gas will be considered
at zero temperature. To this end we calculate both con-
densate depletion and sound velocity of a BEC within
a perturbative solution of the Gross-Pitaevskii equation.
Afterwards, in Sec. VI, we reproduce the expression of the
normalfluid density of a BEC in an external disorder po-
tential obtained earlier within the treatment of Landau.
From this rederivation we realize that condensate parti-
cles, which are scattered by a disorder potential, form
a gas of quasiparticles, which is responsible for the nor-
malfluid component. Finally, we summarize and analyze
the results obtained in the paper in Sec. VII.

II. FUNDAMENTALS OF LASER SPECKLE

THEORY

According to Refs. [7, 11, 12] the circular Gaussian
probability density function

p(AR, AI) =
1

2πη2
exp

(

−A
2
R +A2

I

2η2

)

, (1)

for the real AR and imaginary AI parts of a far-field
A(x, y) at each point x, y with the variance η =

√

〈|A|2〉
represents the background of the theory of laser speckles.
Another basis of the theory is the M -fold joint Gaussian
probability density function

p([A]) =
1

(2π)M |CA|
exp

(

− [A∗][A]

[CA]

)

(2)

for far-fields A(x, y) at different points x, y. Here
[CA] is a Hermitian symmetric matrix with determi-
nant |CA|, whose elements are given by (CA)i,j =
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〈A∗(xi, yi)A(xj , yj)〉 for a set of far-fields [A] ≡
{A(x1, y1), A(x2, y2), . . . A(xM , yM )} at M points of the
x, y plane. Note that the notation 〈· · ·〉 in the expres-
sions for η2 and (CA)i,j and throughout below in the
text means the disorder ensemble average. Furthermore,
one assumes that the indices i, j at (CA)i,j are taken for
adjacent spatial positions.
Expressions (1) and (2) are the result of the central

limit theorem of probability theory [24], which claims
the following: if complex random variables are the sum
of other independent complex random variables then, at
the increase of the number of second ones, the first ones
are distributed according to the Gaussian law. Applying
the theorem for our case we have far fields A(x, y) as
result of the interference of independent object waves at
all positions of x, y plane. As we will see below, there
are mainly two physical conditions for the validity of the
central limit theorem. They are related to the physics
of providing independence of the object waves and to
the method of their summation within the interference
process. We will now describe both of them in more
detail.
A requirement for the object wave a(α, β) to be inde-

pendent leads to some limitations for its statistical prop-
erties [12]. First of all, formed after the reflection of
monochromatic light from the rough surface, the individ-
ual wavelet a(α, β) should be completely polarized. Sec-
ond, the first-order probability density of its phase should
be uniform in the interval −π to π. And at last, the ob-
ject wave a(α, β) should be quasi-homogeneous, which
means that its autocorrelation function Ca consists of a
slowly-varying intensity Ia envelope and a short-range
normalized correlation function C′

a:

Ca(α1, β1;α2, β2) ≡ 〈a∗(α1, β1)a(α2, β2)〉

= Ia

(

α1 + α2

2
,
β1 + β2

2

)

C′
a(α2 − α1, β2 − β1) . (3)

If we increase in this expression the range of variation
of the correlation part, i.e. the correlation length of the
object wave, the changing range of the intensity becomes
smaller. However, in order to entirely satisfy the inde-
pendence condition of the object waves, their correlation
length in Eq. (3) should be as short as possible, which
means that C′

a(α,β) has to be delta correlated. The lat-
ter introduces some demands upon the properties of the
random light scatterer, which is called in the literature
as the diffusor. Typically, a diffusor is an optically ho-
mogeneous transparent glass plate with no reflection cen-
ters for light in the volume and a geometrically inhomo-
geneous distribution of reflection centers with random
heights on its surface. As mentioned in the introduc-
tory section of the paper, the scattering rough surface
generates object waves in a plane α, β, which is closely
situated at the surface, when the monochromatic polar-
ized incident light transmits through the plate. Another
realization of object waves is considered in Refs. [7, 11],
where the lateral monochromatic light was directly inci-
dent on the rough surface. For our purpose to calculate

the normalized speckle autocorrelation function, the op-
tical property of the medium, from which light falls on
the rough surface, is merely dropped from the consider-
ation. Assuming a Gaussian probability density of the
surface height h(α, β) with the autocorrelation function
Ch(α, β) and a variance η2h and assuming also a Gaussian
probability density of object wave phases with a variance
η2φ, Goodman derived the relation [7, 11]

C′
a(α,β) = exp

(

−η2φ[1− Ch(α, β)]
)

, (4)

where ηφ = 2πηh/λ. This function can be approxi-
mated by a delta function δ(α,β) when ηφ > 1 and thus
ηh > λ/2 and the mean distance between two inhomo-
geneous h(α, β) is larger than λ. The delta functional
autocorrelation of object waves provides their indepen-
dence from each other. On the other hand, the Gaussian
probability density of phases reduces to a uniform one for
ηφ > 1 supporting the second requirement for the object
waves outlined above. Therefore, the requirements for
object waves described in the previous paragraph can be
experimentally realized if the size of the surface inhomo-
geneities and the distance between them are larger than
the wave length of the light. As a next implication of the
presented analysis we can suppose that for the outlined
system parameters the object wave probability density
itself may have a circular Gaussian form for the real and
imaginary components of the wavelet a(α, β).
The next important step of the theory of Gaussian laser

speckles is the formation of far fields for a given set of ob-
ject waves. It is based on the Huygens-Fresnel principle
of optics, which preserves the individual wavelet picture,
i.e., works in the limit of optics, where deviations from
geometrical optics are small. The interference of the ob-
ject waves yields an amplitude A(x, y), which reads in
the above mentioned far field Fresnel approximation as
follows

A(x, y) =

∫

A

a(α, β) exp

[

−2πi

λz
(xα + yβ)

]

dαdβ , (5)

where we have omitted unimportant multipliers in front
and inside of the integral. This expression resembles,
indeed, a Fourier transformation and, thus, conserves the
principle that each object wave contributes individually
to the interference.
Using Eqs. (3) and (5) it is straight-forward to derive

the expression for the autocorrelation function

CA(x1, y1;x2, y2) = 〈A∗(x1, y1)A(x2, y2)〉 . (6)

It turns out to be given by

CA(x1, y1;x2, y2) = IA

(

x1 + x2
2

,
y1 + y2

2

)

C′
A(∆x,∆y)

(7)
for ∆x = x2 − x1 and ∆y = y2 − y1 with

IA(x, y) =

∫

A

C′
a(α

′′, β′′) exp

[

−2πi

λz
(xα′′ + yβ′′)

]

dα′′dβ′′

(8)
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and

C′
A(x, y) =

∫

A

Ia(α
′, β′) exp

[

−2πi

λz
(xα′ + yβ′)

]

dα′dβ′

(9)
for the novel variables α′ = (α1+α2)/2, β

′ = (β1+β2)/2
and α′′ = α2 − α1, β

′′ = β2 − β1. Eq. (7) shows that
the far fields A(x, y) are quasi-homogeneous like the ob-
ject waves a(α, β). This is a direct result of the Fourier
transformation (5). Another important result of this lin-
ear transformation is the implicit proof of the above made
supposition that object waves are circularly Gaussian dis-
tributed. Indeed, only Gaussian distributed object waves
can contribute through the linear mapping to Gaussian
far fields. As we will see below the role of the so far
uninvestigated parameter, the aperture A, will lead to
the formation of a correlation length of the correlation
function C′

A(x, y).
The autocorrelation function CI(x, y) of the far-field

intensity I(x, y) = |A(x, y)|2 can be calculated using the
Wick theorem for variables distributed according to the
Gaussian law. A simple calculation gives the expression

CI(x, y) = 〈I〉2
[

1 + |C′
A(x, y)|2

]

, (10)

where the normalized autocorrelation function for the
far-field C′

A(x, y) is defined as C′
A(x, y)/C

′
A(0, 0), where

C′
A(0, 0) = 〈I〉.
As already mentioned above, if in Eq. (3) the autocor-

relation function of object waves C′
a(α,β) is delta corre-

lated, then the intensity function of these waves Ia(α, β)
can be approximated as a constant. Assuming that the
α, β plane is close to the rough surface, one can write
|a(α, β)| = κ|P (α, β)|, where P (α, β) is the incident to
the glass plate light wave and κ is the average reflectiv-
ity of surface, for each position α, β. Then the intensity
of the object waves at α, β is determined by the relation
Ia(α, β) = κ2|P (α, β)|2. Therefore, the expression for
the normalized far-field autocorrelation function reads

C′
A(x, y) =

∫

A
|P (α, β)|2 exp

[

−2πi

λz
(xα+ yβ)

]

dαdβ
∫

A
|P (α, β)|2dαdβ .

(11)

III. SPECKLE AUTOCORRELATION

FUNCTION FOR APERTURES IN 1d TO 3d

DIMENSIONS

As already mentioned in the introductory section, the
investigation of a BEC in the laser speckle disorder has
found much attention from both a theoretical and an
experimental point of view. In particular, a variety of
isotropic and anisotropic speckles have been the subject
of these works. Motivated by this interest, we will de-
scribe in the present section the derivation of the speckle
autocorrelation function for different apertures ranging

from one to three dimensions by generalizing the appro-
priate expressions from the previous section to these di-
mensions.

A. Real space

Due to the analytic form of Eq. (11), we can take the
intensity of the incident wave |P (α, β)|2 to be unity over
the whole aperture region of the α, β plane. Writing the
function |P |2 in the form |P |2d,A, where d is the space
of dimensionality and A is the form of the aperture, we
have the following expressions:

|P (α, β)|22d,rct = rect

(

α

Lα

)

rect

(

β

Lβ

)

(12)

for the 2d anisotropic rectangular aperture with sizes Lα

and Lβ, where the function rect(x) = 1 for |x| ≤ 1/2 and
zero otherwise; retaining in Eqs. (12) only the first rect(x)
function and equating Lα = L one obtains the expression
of |P (α)|21d,inv for the 1d interval aperture of the size L;

the analytic form of |P (α, β)|22d,qdt for the 2d quadratic

aperture of the size L is obtained from Eqs. (12) if we
specialize this equation according to Lα = Lβ = L;

|P (α, β)|22d,crc = circ

(

2r

D

)

(13)

for the 2d isotropic circular aperture with the diameter

D and r =
√

α2 + β2, where the function circ(x) = 1 for
|x| ≤ 1 and zero otherwise;

|P (α, β, γ)|23d,rcpl = rect

(

α

Lα

)

rect

(

β

Lβ

)

rect

(

γ

Lγ

)

(14)
for the 3d anisotropic rectangular parallelepiped aperture
of sizes Lα, Lβ and Lγ ; the expression |P (α, β, γ)|23d,cub
of the 3d cubic aperture of the size L is obtained from
Eq. (14) by setting Lα = Lβ = Lγ = L;

|P (α, β, γ)|23d,sph = circ

(

2r

D

)

(15)

for the 3d isotropic sphere aperture with the diameter D

and r =
√

α2 + β2 + γ2;

|P (r, γ)|23d,cyl = circ

(

2r

D

)

rect

(

γ

Lγ

)

(16)

for the 3d anisotropic cylinder aperture with the diam-

eter of circle D, r =
√

α2 + β2 and size Lγ along the γ
axis. Substituting the expressions (12)–(16) of the |P |2d,A
function in Eq. (11) and calculating the respective inte-
grals, we obtain the corresponding expressions for the
correlation function |C′

A|2:

|C′
A(∆x,∆y)|22d,rct = sinc2

(

Lα∆x

λz

)

sinc2
(

Lβ∆y

λz

)

(17)
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where sinc(y) = sin(πy)/(πy), for the 2d anisotropic rect-
angular aperture with z being the distance between ob-
ject wave and far field planes; retaining in this equa-
tion only first sinc2(y) function, the dependence on
∆x and assuming Lα = L one obtains the expression
|C′

A(∆x)|21d,inv for the 1d interval aperture with z being
the distance between object wave and far field intervals;
the expression |C′

A(∆x,∆y)|22d,qdt for the 2d quadratic

aperture one can derive from Eq. (17) for Lα = Lβ = L;

|C′
A(r)|22d,crc =

∣

∣

∣

∣

∣

∣

∣

∣

2

J1

(

πDr

λz

)

πDr

λz

∣

∣

∣

∣

∣

∣

∣

∣

2

, (18)

where J1(x) is a Bessel function of the first kind and of
the first order, for the 2d isotropic circular aperture with
r =

√

(∆x)2 + (∆y)2;

|C′
A(∆x,∆y,∆z)|23d,rcpl =

sinc2
(

Lα∆x

λz

)

sinc2
(

Lβ∆y

λz

)

sinc2
(

Lγ∆z

λz

)

(19)

for the 3d anisotropic rectangular parallelepiped aperture
with z as the distance between the object wave and the
far field volumes; the expression |C′

A(∆x,∆y,∆z)|23d,cub
for the 3d cubic aperture is obtained from Eq. (19) by
assuming Lα = Lβ = Lγ = L;

|C′
A(r)|23d,sph = (20)

∣

∣

∣

∣

∣

3

(

λz

πDr

)3 [

sin

(

πDr

λz

)

−
(

πDr

λz

)

cos

(

πDr

λz

)]

∣

∣

∣

∣

∣

2

for the 3d isotropic sphere aperture with r =
√

(∆x)2 + (∆y)2 + (∆z)2;

|C′
A(r,∆z)|23d,cyl =

∣

∣

∣

∣

∣

∣

∣

∣

2

J1

(

πDr

λz

)

πDr

λz

∣

∣

∣

∣

∣

∣

∣

∣

2

sinc2
(

Lγ∆z

λz

)

(21)
for the 3d anisotropic cylinder aperture with r =
√

(∆x)2 + (∆y)2.
Expressions of the autocorrelation function for a 2d

quadratic aperture |C′
A(∆x,∆y)|22d,qdt and for a 2d cir-

cular aperture in Eq. (18) are derived by Goodman in
Refs. [7, 11]. As can be seen from the formulas for other
cases of the aperture, they are closely related to both
of these Goodman cases of the aperture. However, the
derivation of the 3d isotropic sphere autocorrelation func-
tion (20), which is a result of the present paper, required
some additional effort.
The analytical forms of the autocorrelation functions

|C′
A|2 are similar in every spatial direction. They have

one central maximum and a set of side maxima of decay-
ing height, which are separated from each other by zeros.

As was pointed out in the introductory section, it is ob-
vious that these forms can not be fitted by a Gaussian.
The argument of the autocorrelation function, which cor-
responds to its first zero, provides the correlation length
of the disorder, i.e. the average size of the speckle grain,
for the appropriate spatial direction. Denoting it by δx
we have, for instance, for 1d speckle

δx =
λz

L
. (22)

The main interest of the present paper is the 3d spher-
ical aperture of Eq. (20) since we will carry out the
calculation of BEC properties for this particular case
of laser speckles. Numerically solving the equation
sin(x) − x cos(x) = 0 we find first its solution to be at
xc = 4.493, thus the disorder correlation length is given
by rc = 1.4302 λz/D.
In order to establish a physical meaning of δx we intro-

duce the ”wave number” keff , which is related to the vec-
tor α, β in the above Fourier transform formulas, by the
relation keff = 2πx/(λz). If we substitute in it δx from
Eq. (22) then we obtain keff = 2π/L. For a circular and
a spherical aperture the ”wave number” is keff = 2π/D.
However, the sense of keff is in an uncertainty of the wave
vector when the problem of wave propagation is solved
in the restricted area. It is well known that in this area
the wave vector is determined within the resolution keff .
Therefore, we can say that the origin of a speckle grain
with a correlation length δx as its size represents the spa-
tial uncertainty in the determination of far fields, which
is introduced by the finite size of the aperture.

B. Fourier space

For many applications the Fourier transform of the
far-field intensity autocorrelation function, or the power
spectral density, of the speckle is of considerable inter-
est. In the literature on laser speckle theory [7, 11] it is
defined according to

CI(k) =

∫

CI(x)e
−i2πkxddx . (23)

Substituting in it Eq. (10) for CI(x) one obtains

CI(k) = 〈I〉2
[

δ(k) + |C′
A(k)|2

]

. (24)

In the perturbative considerations of BEC in the speckle
potential the Fourier transform |C′

A(k)|2 plays the central
role. It has the following expressions for the real space
autocorrelation functions taken from Eqs. (17)–(21):

|C′
A(k)|22d,rct =

(λz)2

LαLβ
tri

(

kxλz

Lα

)

tri

(

kyλz

Lβ

)

(25)

where the triangle function is defined as tri(x) = 1 − |x|
for |x| ≤ 1 and zero otherwise, for the 2d anisotropic rect-
angular aperture; the expression |C′

A(k)|21d,inv for the 1d
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interval aperture one can get from Eq. (25) by assuming
Lα = Lβ = L, kx = ky = k and taking the square root of
its right-hand side; the expression |C′

A(k)|22d,qdt for the

2d quadratic aperture is obtained from Eq. (25) with the
assumption Lα = Lβ = L;

|C′
A(k)|22d,crc = 2

(

2λz

πD

)2

(26)

×



cos−1

(

kλz

D

)

− kλz

D

√

1−
(

kλz

D

)2





for the 2d isotropic circular aperture with k =
√

k2x + k2y;

|C′
A(k)|23d,rcpl =

(λz)3

LαLβLγ
(27)

×tri

(

kxλz

Lα

)

tri

(

kyλz

Lβ

)

tri

(

kzλz

Lγ

)

for the 3d anisotropic rectangular parallelepiped aper-
ture; the expression |C′

A(k)|23d,cub for the 3d cubic aper-

ture is obtained from Eq. (27) by specializing Lα = Lβ =
Lγ = L;

|C′
A(k)|23d,sph =

3

π

(

2λz

4D

)3

(b3 − 12b+ 16) (28)

for the 3d isotropic sphere aperture with b = 2kλz/D

and k =
√

k2x + k2y + k2z ;

|C′
A(k)|23d,cyl =

(

λz

Lγ

)

tri

(

kzλz

Lγ

)

(29)

×2

(

2λz

πD

)2



cos−1

(

kλz

D

)

− kλz

D

√

1−
(

kλz

D

)2





for the 3d anisotropic cylinder aperture with k =
√

k2x + k2y.

The equation for the quadratic aperture |C′
A(k)|22d,qdt

and Eq. (26) have been derived by Goodman in Refs. [7,
11]. Other expressions of |C′

A(k)|2, except for the 3d
isotropic sphere aperture case, can be obtained by us-
ing these formulas. Eq. (28) is a result of this paper.
In all our formulas for the anisotropic aperture we have
assumed that the size deviation of the aperture with re-
spect to its average isotropic size is essentially less than
the distance z.
As is seen from the formulas of |C′

A(k)|2 expressed
through the triangle function their value becomes zero
when their argument is unity. For the 2d circle and the 3d
sphere apertures |C′

A(k)|2 is zero for kλz/D = 1. Hence,
the wave vector of the Fourier transform autocorrelation
function only varies in a finite interval from zero, in con-
trast to the case for a Gaussian function. This fact is
another reason why the speckle autocorrelation function
can not be approximated by a Gaussian form.

It is worth to discuss the expression |C′
A(r)|2 =

sinc2(kLr) with kL = D/λz for the autocorrelation func-
tion used in Ref. [25] for the 3d isotropic aperture. It is
similar to our correlation function |C′

A(∆x)|21d,inv for the

1d interval aperture. The authors of Ref. [25] claim that
this expression is valid for z ∼ (α2 + β2)max/λ, which is
outside of the far-field limit. However, that limit destroys
the fundamentals of the Gaussian speckle theory as they
are described in Sec. II. Therefore, it is unclear whether
|C′

A(r)|2 of Ref. [25] is related to laser speckles or not.

Furthermore, we discuss the definition of the speckle
correlation length to be the width at the half value of the
maximum of |C′

A(r)|2 for r = 0, when the last one is ap-
proximated by a Gaussian function. Probably, this defi-
nition was introduced first by Modugno in Ref. [26], when
he considered |C′

A(∆x)|21d,inv. It was found in Ref. [26]

that the correlation length is given by δx = 0.88λz/L,
while from Eq. (22) the exact value turns out to be
δx = λz/L. It is interesting that the Gaussian |C′

A(r)|2
has been obtained in the numerical simulation of the 3d
isotropic laser speckle in Refs. [13, 14] which should be
compared with the exact |C′

A(r)|23d,sph in Eq. (20), with

the correlation length rc = 1.1λz/D, however, the exact
one is rc = 1.4302λz/D, see the discussion after Eq. (22).
It seems that we can explain the reason why the authors
of Refs. [13, 14] obtained the Gaussian form of |C′

A(r)|2.
They used the speckle simulation method proposed by
Huntley in Ref. [27] which we briefly review for the 2d
case. Let us consider to this end two square planes α, β
and x, y with the same size L. According to the Hunt-
ley method one uses Eq. (5) in order to perform a double
Fourier transformation. In the first inverse Fourier trans-
formation the complex object waves a(α, β) on the mesh
points in the α, β plane are simulated through the given
Gaussian distributed complex random waves A(x, y) on
the mesh points in the x, y plane. Afterwards, one cuts
by a circle with radius D/2 the α, β region of the ob-
tained a(α, β) such that it vanishes outside of this region.
In the second direct Fourier transformation the derived
complex waves a(α, β) form the final complex far-fields
A(x, y). Huntley has investigated in Ref. [27] only the
first-order statistical property of the simulated pattern,
i.e. the probability density of the intensity, and showed
that it corresponds to the theoretical laser speckles of
Ref. [7]. However, the proposed simulation method can
drastically deviate in the second-order statistical prop-
erty of a speckle, i.e. its autocorrelation function, from
the theoretical one.

Indeed, in accordance with the theory of a speckle au-
tocorrelation function as presented in this section, after
the first Fourier mapping the object waves a(α, β) ac-
quire a correlation with the correlation length δα = δβ =
λz/L, where L is size of the square x, y plane. More
precisely, now the function C′

a(α, β) is not delta corre-
lated. However, according to Eq. (3), the broadening of
the C′

a(α, β) function reduces to a changing of a con-
stant character of the Ia(α, β) function to one of varying
in space in the α,β plane. Substituting this function of
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Ia(α, β) in Eq. (9) and integrating over α and β gives
the function C′

A(x, y) which may qualitatively be differ-
ent from the one discussed in this section.
A simulation method, which is consistent with the

above laser speckle theory, is described in the book of
Goodman [11]. There are other numerical methods in
Refs. [28, 29], in which the exact form of the real space
autocorrelation function is used to generate the speckle
pattern. In particular, one of such methods was exploited
for the simulation of 1d speckle in Ref. [30].

IV. EXPERIMENTAL REALIZATION OF 3d

ISOTROPIC SPECKLE

As was already mentioned in the introductory section,
we consider here a true 3d speckle, not the quasi-three di-
mensional one consisting of a transverse 2d speckle with
a longitudinal depth in the autocorrelation function as
described in details in Ref. [23] and section 4.4.3 of the
Goodman book [11] and applied in many experiments. At
a first glance, it seems exotic and unrealistic to experi-
mentally realize such a 3d volume speckle pattern. How-
ever, in the present section we will describe the physical
principle how it can be generated.
In the typical 2d geometry of the experimental realiza-

tion of a speckle a lens, which collects the incident light,
is installed close to the glass plate such that its focal
plane coincides with the far-field plane [22]. This idea
of a speckle formation in the focal plane can be gener-
alized to a full 3d geometry, when the speckle is formed
in the focal point, i.e. the focus, of an empty ellipsoidal
optic cavity according to the scheme displayed in Fig. 1.
Let us consider that cavity, whose inside surface reflects
absolutely the light emitted from one of its focus (point
A) and collects it at the second focus (point B). Two
laser beams (thick yellow arrows) are incident through
holes in the cavity surface into the small metallic sphere,
i.e. the reflector, with absolute light reflection, located
in the center of the glass sphere A. It is assumed that
laser beams cover the entire surface of this reflector and
a BEC is deposited in the sphere B, which is located at
the second focus of the ellipsoid.
The glass sphere A additionally contains the located

randomly light scattering centers, for instance, absolutely
light reflective metallic polyhedrons with a random aver-
age size of each facet. The theory how to derive the 2d
object wave autocorrelation function C′

a(α, β), described
in Refs. [7, 11], can be easily generalized to the derivation
of C′

a(α, β, γ) for such a 3d case with the same expres-
sion (4). However, now this expression is a function of
3d other quantities. The condition, at which C′

a(α, β, γ)
becomes delta correlated and the object waves are inde-
pendent, is the same as for C′

a(α, β). Therefore, if the
mean distance between these light scattering centers and
the average size of polyhedrons are larger than the light
wavelength, then C′

a(α, β, γ) will be delta correlated. On
the other hand, each sphere with radius (α2+β2+γ2)1/2

FIG. 1: Cross section of the ellipsoidal reflective cavity with

spheres A and B in its focuses. Focus A contains a small

size absolute spherical light reflector in the center and vol-

ume optic inhomogeneities. Incident laser beams (thick yellow

arrows), after reflection from the reflector, scatter addition-

ally from inhomogeneities producing individual wavelets (thin

yellow lines), which are collected in focus B, where a BEC is

deposited.

and with the same center as the sphere A will be the ob-
ject wave volume, whereas for comparison for 2d we had
a α, β object wave plane.
Incident laser beams, after reflection from the reflector,

scatter additionally from scattering centers and produce
individual and independent wavelets, the object waves
a(α, β, γ), indicated via thin yellow lines in Fig. 1, which
are collected in the sphere B, where a BEC is deposited.
For the presented geometry the far-field condition is sat-
isfied, since a distance z between the object wave and the
far-field volumes, i.e. the length of each wavelet trajec-
tory between two focuses of the ellipsoid, is larger than
the size of the object wave sphere A.
The described scheme can be generalized for the ex-

perimental realization of any 3d anisotropic speckle. To
this end one only needs to change the form of the spher-
ical aperture A, which contains the glass and the light
scattering centers, into a suitable one listed in the previ-
ous section. The spherical form of the metallic reflector
retains unchanged.
At the end of this section, it is worthwhile to discuss

the possible realization of a 3d volume speckle pattern
using 2d plane speckles. Such a scenario presumes a 3d
speckle as a result of the sum or, more clearly, as a linear
interference of two and more 2d speckles. While the-
oretically this scenario is discussed by Pilati at al. in
Ref. [14], the experiment, in which two perpendicular 2d
speckle planes form a 3d speckle pattern, was realized
in Ref. [31] by Jendrzejewski et al. Instantly the ques-
tion arises whether the random pattern realized in such
a way belongs to the class of speckles or not. In spite
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of an additional theoretical analysis, which is required to
answer that question in detail, the following argument
shows that the possible conclusion is negative. Indeed,
according to the fundamentals of the laser speckle the-
ory of Goodman, Refs. [7, 11], and Dainty, Ref. [12], see
also Secs. II and III of this paper, the correlated speckle
pattern in any dimension, except the one described in
Ref. [23] and its analogue for 1d (see next paragraph),
is a result of the Fourier transform over the restricted
aperture object wave region in the same dimension. This
means that a 3d volume speckle can be obtained only
by a 3d object wave volume. Physically it means that
the single connected spatial domain of each 3d speckle
grain, which is a result of 3d correlations, can not be
obtained by a linear combination of randomly sized and
independent 2d speckle grains. By that reason, the true
3d speckle cannot be obtained even by a combination of
quasi-three dimensional speckles, which we discussed at
the beginning of this section.

V. BEC DEPLETION AND SOUND VELOCITY

IN WEAK 3d ISOTROPIC SPECKLE

The interaction potential of light with an atom at po-
sition r is determined by the far-field intensity I(r) =
|A(r)2| and has the form V (r) = tI(r), see for instance
Refs. [22, 25], where the constant t is a function of the
atomic and light characteristics. At the derivation of
V (r) it was assumed that the incident laser wave does
not induce an atomic electron interlevel transition, but
merely deforms the atomic ground state.
It is convenient to define the interaction potential as

V (r) = V0 + ∆V (r), where ∆V (r) = V (r) − V0 and
V0 = 〈I〉. Using the obvious property 〈∆V (r)〉 = 0, a
simple calculation shows that

〈V (r′)V (r′ + r)〉 = V 2
0

[

1 +
〈∆V (r′)∆V (r′ + r)〉

V 2
0

]

(30)

and, therefore, we have the following relationships be-
tween the laser speckle autocorrelation and the disorder
potential correlation functions:

|CI(r)|2 = 〈V (r′)V (r′ + r)〉 ,

|C′
A(r)|2 =

〈∆V (r′)∆V (r′ + r)〉
V 2
0

. (31)

Our interest is a Bose gas with a contact interaction.
Taking into account that, according to the novel defini-
tion of V (r), the chemical potential for the ground state
of BEC will be renormalized according to µ → µ − V0,
the Gross-Pitaevskii equation (GPE) reads

[

− h̄2

2m
∇

2 +∆V (r) + g|Ψ(r)|2 − µ

]

Ψ(r) = 0 . (32)

Here g = 4πh̄2a/m denotes the strength of the contact
interaction with the scattering length a.

Under the assumption that the disorder potential is
weak, one can expand the solution

Ψ(r) = ψ0 + ψ1(r) + ψ2(r) + · · · (33)

and solve the GPE (32) perturbatively in the respective
order of ∆V (r) [32]. For the ground state all functions
of the expansion as well as Ψ(r) are real. In this way
the problem is reduced to find the total particle density
n = 〈Ψ(r)2〉 and the condensate density n0 = 〈Ψ(r)〉2. In
particular, the lowest order expression for the condensate
depletion reads

n− n0 = n0

∫

d3k

(2π)3
R(k)

[h̄2k2/2m+ 2ng]2
+ · · · , (34)

where we introduced the literature notation R(k) =
R|C′

A(k)|2 with R = V 2
0 .

In order to further apply our formula Eq. (28) for the
3d isotropic autocorrelation function |C′

A(k)|23d,sph, one
needs to make a remark. According to the definition in
Eq. (23), the Fourier transforms of autocorrelation func-
tions carry a physical dimension. In particular, the cor-
relation function |C′

A(k)|23d,sph, calculated with Eq. (23),
is proportional to the inverse volume of the 3d isotropic
aperture 3/(4π)(2/D)3 times (λz)3. If we introduce the
correlation length as σ = λz/D, then the proportionality
factor is 3(2σ)3/(4π). In the following, we assume that
|C′

A(k)|23d,sph is already normalized by that factor.
It is convenient to introduce also the BEC co-

herence length according to ξ = [h̄2/(2mng)]1/2 =

1/
√
8πna. Substituting the normalized correlation

function R|C′
A(k)|23d,sph from Eq. (28) in Eq. (34)

and performing the integration, we get the expression
n − n0 = nHMf(σ/ξ), where the depletion nHM =

[m2R/(8π3/2h̄4)]
√

n/a was obtained by Huang andMeng
in Ref. [33] (see also Ref. [34]) for delta correlated disor-
der R(r) and the condensate depletion function is defined
via

f

(

σ

ξ

)

=
1√
2π

σ

ξ

[

4−
(

8σ2

ξ2
+ 6

)

ln

(

1 +
ξ2

2σ2

)

+
4√
2

ξ

σ
arctan

(

ξ√
2σ

)]

. (35)

The function f(σ/ξ), which is depicted in Fig. 2, has the
following asymptotics for small σ/ξ

f

(

σ

ξ

)

≈ 1− 14
√
2

3π

(

σ

ξ

)3

− 18
√
2

5π

(

σ

ξ

)5

+ · · · (36)

and, correspondingly, for large σ/ξ

f

(

σ

ξ

)

≈ 1

25/2π

[

1

3

(

ξ

σ

)3

− 1

10

(

ξ

σ

)5
]

+ · · · (37)

Introducing the appropriate correlation length for each
aperture, as described in Sec. III, one can show that,
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FIG. 2: Condensate depletion function f(σ/ξ) from Eq. (35).

when this correlation length tends to zero, then the cor-
responding correlation function |C′

A(r)|2 tends to the
delta function. The same behavior has our function
|C′

A(r)|23d,sph in the limit σ → 0. Therefore, we should
reproduce the Huang and Meng result nHM for the con-
densate depletion in this limit. Indeed, when σ/ξ → 0
we read off from Eq. (36) that one obtains f(σ/ξ) → 1.

For the 3d isotropic Bose gas with contact interaction
the normalfluid density nN is determined by the equation
nN = 4(n−n0)/3 (see Sec. VI below and Ref. [32] as well
as the references therein), from which nN is proportional
to the function of f(σ/ξ).

In Ref. [32] the sound velocity of a dipolar BEC in a
weak external disorder potential is calculated within a
hydrodynamic approach. To this end a general deriva-
tion was performed which is applicable for an arbitrary
interaction potential. For an isotropic 3d system with
contact interaction it has the form:

c

c0
= 1+

∫

d3k

(2π)3
R(k)

(h̄2k2/2m+ 2ng)2

×
{

h̄2k2/2m

(h̄2k2/2m+ 2ng)
− (q̂k̂)2

}

+ · · · , (38)

where c0 = (ng/m)1/2 is the sound velocity in a sys-
tem without disorder and the scalar product between the
sound direction q̂ and the direction of wave propagation

k̂ has the form q̂k̂ = cosϑ for an isotropic system.

Calculating the integral in Eq. (38), we obtain c/c0 =
1 + nHMs(σ/ξ)/(2n), where the sound velocity function
reads

s

(

σ

ξ

)

=
23/2

π

σ

ξ

[

14

3
−
(

28σ2

3ξ2
+ 4

)

ln

(

1 +
ξ2

2σ2

)

+
5

3
√
2

ξ

σ
arctan

(

ξ√
2σ

)]

(39)

It is depicted in Fig. 3 and has the following asymptotics
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FIG. 3: Sound velocity function s(σ/ξ) from Eq. (39).

for small σ/ξ

s

(

σ

ξ

)

≈ 5

3
+

23/23

π

(

σ

ξ

)

− 23/262

9π

(

σ

ξ

)3

+ · · · (40)

and for large σ/ξ

s

(

σ

ξ

)

≈ 21/2

π

[

−7

3

(

ξ

σ

)

+
13

18

(

ξ

σ

)3
]

+ · · · , (41)

respectively.
Again, when the correlation length σ → 0 and thus the

correlation function |C′
A(r)|23d,sph is delta correlated, we

reproduce the result s(σ/ξ) ≈ 5/3 of Ref. [35], obtained
for delta correlated R(r).
As shown in this section, the finite range of integration

for the vector k, when a Fourier transform of a speckle
correlation function is being applied, essentially simpli-
fies the analytic calculation of the BEC properties. This
is an essential advantage of applying the laser speckle
theory to the BEC investigation. Conversely, due to the
infinite limit of integration on k, the Gaussian disorder
correlation function, which is often used in the literature,
introduces some difficulties in its application to the BEC
theory.

VI. LANDAU DERIVATION OF

NORMALFLUID DENSITY

Let K0 be a reference frame, and K a second frame
with relative velocity −v with respect to K0. According
to the Galilean transformation in classical mechanics, the
energy E0 of a system in the frame K0 and its energy E
in the frame K are related to each other by:

E = E0 −P0v +
M

2
v2 , (42)

where P0 and M are the total momentum and the mass
of the system, respectively.
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Following to Refs. [36, 37] let us assume that, at tem-
perature T = 0, the condensate is in rest, i.e., in the
frame K0, and its energy is E0 = 0 with momentum
P0 = 0. If one quasiparticle with mass m appears in
the condensate with energy ε(p), where p is a momen-
tum of the quasiparticle, then in the frame K0 energy
and momentum now become E0 = ε(p) and P0 = p.
Hence, from Eq. (42) the energy E in frame K will be
E = ε(p) − pv +Mv2/2 and the energy of the quasi-
particle in frame K after a Galilean transformation has
a form ε(p)− pv.
According to the Landau two-fluid theory [36, 37] of

liquid helium II, a gas of quasiparticles, for instance
phonons, constitutes the normalfluid density at low tem-
peratures. For T = 0 no quasiparticles exist, thus the
helium is entirely superfluid. If a gas of quasiparticles ap-
pears in the system for finite but low temperatures, which
has zero center mass velocity in the frame K0 and moves
with constant velocity −v with respect to the frame K,
in which the helium liquid is in the rest, then the total
momentum of the gas per volume in the frame K is given
by

P

V
=

∫

pN(ε(p)− pv)
d3p

(2πh̄)3
, (43)

whereN(ε(p)) is the average occupation number of states
by phonons with energy ε(p). Eq. (43) describes the ther-
modynamic property of a gas of phonons. However, it can
be generalized to our BEC system in the external disor-
der potential at T = 0, if we assume that, after scattering
with the disorder, particles of the condensate become the
quasiparticles of the normalfluid density. It is clear that
it occurs when the disorder is attached to the frame K0.
To this end we replace in Eq. (43) the thermodynamic
quantity N(ε(p)−pv) by the quantum one |Ψ(p−mv)|2,
where the wave function is a solution of the GPE with
disorder and written in momentum representation. After
that we average both sides of Eq. (43) over the disorder
ensemble. The obtained mean square of the modulo of
the wave function is now homogeneous in space, so it can
be expressed in terms of the energy of a quasiparticle,
as the Hamiltonian is commutative with the momentum
operator and thus the eigenfunction of the latter can be
taken as the eigenfunction of the former [38]. Recalling
that the expression for the total density is n = 〈Ψ2〉, we
obtain

〈P〉
V

=

∫

pn(ε(p)− pv)
d3p

(2πh̄)3
. (44)

In order to derive the expression for the normalfluid
density we expand the integrand of Eq. (44) in power of
pv and, in the limit v → 0, retain only its first two terms.
After integrating over the directions of the vector p the
zeroth order term of this expansion disappears. Thus one
obtains

〈P〉
V

= −
∫

p (pv)
dn(ε(p))

dε(p)

d3p

(2πh̄)3
. (45)

This expression is the main result of the normalfluid den-
sity Landau theory, when the two replacements 〈P〉 by
P and n(ε(p)) by N(ε(p)) are performed.
Taking into account that p(pv) = p2zv, the expression

for the normalfluid density reduces to

ρn = −
∫

p2z
dn(ε(p))

dε(p)

d3p

(2πh̄)3
. (46)

From Eq. (34) we have the expression of the total density
Fourier transform

n(ε(p)) = (2π)3n0δ(k) +
n0R(k)

(h̄2k2/2m+ 2ng)2
, (47)

in first order of R(k), from which the energy of the
quasiparticles follows to be ε(p) = p2/2m+ 2ng, where
p = h̄k. Substituting ε(p) in Eq. (46) and performing
its integral by parts and using in the obtained expression
n(ε(p)) from Eq. (47), one gets

ρn = ρ0

∫

d3k

(2π)3
p2zR(k)

p2(h̄2k2/2m+ 2ng)2
, (48)

where ρ0 = mn0.
It is interesting that there is the relationship εB(p) =

ε1/2(p)p/(2m)1/2 between our ε(p) and the Bogoliubov
quasiparticle energy εB(p). If we use this relation, then
we obtain

ρn =
ρ0
4

∫

d3k

(2π)3
p2 p2zR(k)

m2ε4B(p)
. (49)

This expression without the prefactor 1/4 coincides with
Eq. (19) of Ref. [35] for the normalfluid density ρn,LR, ob-
tained within the linear response approach, if we replace
V
∫

d3k/(2π)3 by
∑

k
. The prefactor 1/4 appears from

the relation between ε(p) and εB(p). For a 3d isotropic
BEC system we have p2x = p2y = p2z and p2 = 3p2z. Multi-
plying the right-hand side of Eq. (48) with 3 and cancel-
ing 3p2z and p2 in the numerator and the denominator,
we obtain Eq. (34), therefore, n−n0 = 3ρn,LR/(4m) [35].
It is worth to discuss the validity to use the Landau ap-

proach for BEC with the disorder. According to a remark
in the text book [39] the Landau approach should not be
applicable for such a system. Indeed, the applied Lan-
dau derivation of the normalfluid density presumes the
validity of the quasiparticle concept (see, for instance,
Refs. [36, 37]), in which there are no collisions not only
between quasiparticles but also of last ones with the ex-
ternal disorder potential. More exactly, according to this
concept quasiparticles should be well defined and their
gas should be ideal.
In our case, effective quasiparticles with the mean-field

energy ε(p) and the quantum state distribution at tem-
perature T = 0, represented by the total density n(ε(p)),
appear in the system after the disorder ensemble average.
However, after this averaging the real space is homoge-
neous and there is no reason for the gas of effective quasi-
particles to be not ideal. Hence, if for the conventional
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quasiparticles the source of their appearance is the low
temperature, here it is the scattering of the condensate
particles with the disorder and then their excitation and
departure from the condensate. This physical conclusion
naturally arises from the Landau derivation of the nor-
malfluid density.

VII. SUMMARY AND CONCLUSION

At first, we have summarized the derivation of the au-
tocorrelation function of the laser speckle in 1d and 2d
following the seminal work of Goodman. We showed that
a Gaussian approximation of this function, proposed in
some recent papers, is inconsistent with the background
of laser speckle theory. Then we have proposed a possible
experimental realization for an isotropic 3d laser speckle
potential and derived its corresponding autocorrelation
function. Using a Fourier transform of that function, we
calculated both condensate depletion and sound veloc-

ity of a BEC in a weak speckle disorder within a per-
turbative solution of the Gross-Pitaevskii equation. At
the end, we reproduced the expression of the normalfluid
density obtained earlier within the treatment of Landau.
This physically transparent derivation showed that con-
densate particles, which are scattered by disorder, form
a gas of quasiparticles which is responsible for the nor-
malfluid component. We have justified the validity of the
Landau approach to our BEC system with disorder.

VIII. ACKNOWLEDGEMENTS

One of the authors, B. A., thanks the Volkswagen
Foundation for partial support of the work. B. A. is also
grateful to Center for International Cooperation at the
Freie Universität Berlin for its hospitality. Both authors
appreciate Hagen Kleinert and the members of his group
for many discussions.

[1] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D.

S. Fisher, Phys. Rev. B 40, 546 (1989).

[2] M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S.

Wong, and J. D. Reppy, Phys. Rev. Lett. 61, 1950 (1988).

[3] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[4] L. Sanchez-Palencia and M. Lewenstein, Nature Phys. 6,

87 (2010).

[5] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P.

Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and

A. Aspect, Nature 453, 891 (2008).

[6] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.

Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,

Nature 453, 895 (2008).

[7] J. W. Goodman, Statistical Properties of Laser Speckle

Patterns in J. C. Dainty (Editor), Laser Speckle and Re-

lated Phenomena (Springer-Verlag, Berlin, 1975).

[8] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus,

Phys. Rev. A 75, 063404 (2007).

[9] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. De-

Marco, Science 334, 66 (2011).

[10] L. Pezze, M. Robert-de-Saint-Vincent, T. Bourdel, J.-P.

Brantut, B. Allard, T. Plisson, A. Aspect, P. Bouyer, and

L. Sanchez-Palencia, New J. Phys. 13, 095015 (2011).

[11] J. W. Goodman, Speckle Phenomena in Optics: Theory

and Applications (Roberts and Co, Englewood, 2007).

[12] J. C. Dainty, An introductiuon to ’Gaussian’ speckle

in SPIE, Vol. 243 Applications of Speckle Phenomena

(1980).

[13] S. Pilati, S. Giorgini, and N. Prokof’ev, Phys. Rev. Lett.

102, 150402 (2009).

[14] S. Pilati, S. Giorgini, M. Modugno, and N. Prokof’ev,

New J. Phys. 12, 073003 (2010).

[15] M. Piraud, L. Pezze, and L. Sanchez-Palencia, Europhys.

Lett. 99, 50003 (2012).

[16] D. Clement, A. F. Varon, M. Hugbart, J. A. Retter,

P. Bouyer, L. Sanchez-Palencia, D. M. Gangardt, G. V.

Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 95, 170409

(2005).

[17] D. Clement, P. Bouyer, A. Aspect, and L. Sanchez-

Palencia, Phys. Rev. A 77, 033631 (2008).

[18] Y. P. Chen, J. Hitchcock, D. Dries, M. Junker, C.

Welford, and R. G. Hulet, Phys. Rev. A 77, 033632

(2008).

[19] D. Dries, S. E. Pollack, J. M. Hitchcock, and R. G. Hulet,

Phys. Rev. A 82, 033603 (2010).

[20] C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno,

D. S. Wiersma, and M. Inguscio, Phys. Rev. Lett. 95,

170410 (2005).

[21] M. Robert-de-Saint-Vincent, J. -P. Brantut, B. Allard,

T. Plisson, L. Pezze, L. Sanchez-Palencia, A. Aspect, T.

Bourdel, and P. Bouyer, Phys. Rev. Lett. 104, 220602

(2010).

[22] D. Clement, A. F. Varon, J. A. Retter, L. Sanchez-

Palencia, A. Aspect, and P. Bouyer, New J. Phys. 8,

165 (2006).

[23] L. Leushacke and M. Kirchner, J. Opt. Soc. Am. A 7,

827 (1990).

[24] D. Middleton, Introduction to Statistical Communication

Theory (McGraw Hill, New York, 1960).

[25] R. C. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, and



12

C. A. Muller, New J. Phys. 9, 161 (2007).

[26] M. Modugno, Phys. Rev. A 73, 013606 (2006).

[27] J. M. Huntley, Appl. Opt. 28, 4316 (1989).

[28] H. A. Makse, S. Havlin, M. Schwartz, and H. E. Stanley,

Phys. Rev. E 53, 5445 (1996).

[29] P. R. Kramer, O. Kurbanmuradov, and K. Sabelfeld, J.

Comput. Phys. 226, 897 (2007).

[30] S. Sucu, S. Aktas, S. E. Okan, Z. Akdeniz, and P. Vig-

nolo, Phys. Rev. A 84, 065602 (2011)

[31] F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet,

V. Josse, M. Piraud, L. Pezze, L. Sanchez-Palencia, A.

Aspect, P. Bouyer, Nature Phys. 8, 398 (2012).

[32] C. Krumnow and A. Pelster, Phys. Rev. A 84, 021608(R)

(2011).

[33] K. Huang and H.-F. Meng, Phys. Rev. Lett. 69, 644

(1992).

[34] G.M. Falco, A. Pelster, and R. Graham, Phys. Rev. A

75, 063619 (2007).

[35] S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B

49, 12938 (1994).

[36] L. Landau, J. Phys. USSR, 5, 71 (1941).

[37] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics.

Theory of the Condensed State (Elsevier Ltd., Amster-

dam 1980).

[38] L. D. Landau and E. M. Lifshitz, Quantum Mechan-

ics. Non-Relativistic Theory (Elsevier Ltd., Amsterdam

1977).

[39] L. Pitaevskii and S. Stringari, Bose-Einstein Condensa-

tion (Clarendon Press, Oxford, 2003), p.66.


