27 research outputs found

    Far Infrared Observations of Radio Quasars and FR II Radio Galaxies

    Get PDF
    We report MIPS photometry of 20 radio-loud quasars and galaxies at 24 and 70 um (and of five at 160 um). We combine this sample with additional sources detected in the far infrared by IRAS and ISO for a total of 47 objects, including 23 steep spectrum Type I AGNs: radio-loud quasars and broad line radio galaxies; and 24 Type II AGNs: narrow line and weak line FR II radio galaxies. Of this sample, the far infrared emission of all but 3C 380 appears to be dominated by emission by dust heated by the AGN and by star formation. The AGN appears to contribute more than 50% of the far infrared luminosity in most of sources. It is also expected that the material around the nucleus is optically thin in the far infrared. Thus, the measurements at these wavelengths can be used to test the orientation-dependent unification model. As predicted by the model, the behavior of the sources is consistent with the presence of an obscuring circumnuclear torus; in fact, we find it may still have significant optical depth at 24 um.In addition, as expected for the radio-loud quasars, there is a significant correlation between the low frequency radio (178 MHz) and the 70 um emission, two presumably isotropic indicators of nuclear activity. This result is consistent with the simple unified scheme. However, there is a population of radio galaxies that are underluminous at 70 um compared with the radio-loud quasars and hence are a challenge to the simple unified model.Comment: Accepted for publication in ApJ, 33 pages, 7 figure

    Reduction Algorithms for the Multiband Imaging Photometer for Spitzer

    Full text link
    We describe the data reduction algorithms for the Multiband Imaging Photometer for Spitzer (MIPS) instrument. These algorithms were based on extensive preflight testing and modeling of the Si:As (24 micron) and Ge:Ga (70 and 160 micron) arrays in MIPS and have been refined based on initial flight data. The behaviors we describe are typical of state-of-the-art infrared focal planes operated in the low backgrounds of space. The Ge arrays are bulk photoconductors and therefore show a variety of artifacts that must be removed to calibrate the data. The Si array, while better behaved than the Ge arrays, does show a handful of artifacts that also must be removed to calibrate the data. The data reduction to remove these effects is divided into three parts. The first part converts the non-destructively read data ramps into slopes while removing artifacts with time constants of the order of the exposure time. The second part calibrates the slope measurements while removing artifacts with time constants longer than the exposure time. The third part uses the redundancy inherit in the MIPS observing modes to improve the artifact removal iteratively. For each of these steps, we illustrate the relevant laboratory experiments or theoretical arguments along with the mathematical approaches taken to calibrate the data. Finally, we describe how these preflight algorithms have performed on actual flight data.Comment: 21 pages, 16 figures, PASP accepted (May 2005 issue), version of paper with full resolution images is available at http://dirty.as.arizona.edu/~kgordon/papers/PS_files/mips_dra.pd

    First look at the Fomalhaut debris disk with the Spitzer Space Telescope

    Get PDF
    We present Spitzer Space Telescope early release observations of Fomalhaut, a nearby A-type star with dusty circumstellar debris. The disk is spatially resolved at 24, 70, and 160 ïżœ m using the Multiband Imaging Photometer for Spitzer (MIPS). While the disk orientation and outer radius are comparable to values measured in the submillimeter, the disk inner radius cannot be precisely defined: the central hole in the submillimeter ring is at least partially filled with emission from warm dust, seen inSpitzerInfrared Spectrograph (IRS) 17.5‐34 ïżœ m spectra and MIPS 24 ïżœ m images. The disk surface brightness becomes increasingly asymmetric toward shorter wavelengths, with the south-southeast ansa always brighter than the north-northwest one. This asymmetry may reflect perturbations on the disk by an unseen interior planet. Subject headingg circumstellar matter — infrared: stars — planetary systems — stars: individual (Fomalhaut

    Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 ÎŒm Calibration

    Get PDF
    We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 ÎŒm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is MJy sr^−1 (DN s^−1)^−1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is lower. We extend this work to predict 24 ÎŒm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 ÎŒm. This sample covers a factor of 460 in 24 ÎŒm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    On-orbit performance of the MIPS instrument

    Full text link
    The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160 microns and measurements of spectral energy distributions between 52 and 100 microns at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24 micron array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%

    The Physics of the B Factories

    Get PDF
    corecore