We describe the data reduction algorithms for the Multiband Imaging
Photometer for Spitzer (MIPS) instrument. These algorithms were based on
extensive preflight testing and modeling of the Si:As (24 micron) and Ge:Ga (70
and 160 micron) arrays in MIPS and have been refined based on initial flight
data. The behaviors we describe are typical of state-of-the-art infrared focal
planes operated in the low backgrounds of space. The Ge arrays are bulk
photoconductors and therefore show a variety of artifacts that must be removed
to calibrate the data. The Si array, while better behaved than the Ge arrays,
does show a handful of artifacts that also must be removed to calibrate the
data. The data reduction to remove these effects is divided into three parts.
The first part converts the non-destructively read data ramps into slopes while
removing artifacts with time constants of the order of the exposure time. The
second part calibrates the slope measurements while removing artifacts with
time constants longer than the exposure time. The third part uses the
redundancy inherit in the MIPS observing modes to improve the artifact removal
iteratively. For each of these steps, we illustrate the relevant laboratory
experiments or theoretical arguments along with the mathematical approaches
taken to calibrate the data. Finally, we describe how these preflight
algorithms have performed on actual flight data.Comment: 21 pages, 16 figures, PASP accepted (May 2005 issue), version of
paper with full resolution images is available at
http://dirty.as.arizona.edu/~kgordon/papers/PS_files/mips_dra.pd