57 research outputs found

    Primitive model electrolytes. A comparison of the HNC approximation for the activity coefficient with Monte Carlo data

    Full text link
    Accuracy of the mean activity coefficient expression (Hansen-Vieillefosse-Belloni equation), valid within the hypernetted chain (HNC) approximation, was tested in a wide concentration range against new Monte Carlo (MC) data for +1:-1 and +2:-2 primitive model electrolytes. The expression has an advantage that the excess chemical potential can be obtained directly, without invoking the time consuming Gibbs-Duhem calculation. We found the HNC results for the mean activity coefficient to be in good agreement with the machine calculations performed for the same model. In addition, the thermodynamic consistency of the HNC approximation was tested. The mean activity coefficients, calculated via the Gibbs-Duhem equation, seem to follow the MC data slightly better than the Hansen-Vieillefosse-Belloni expression. For completeness of the calculation, the HNC excess internal energies and osmotic coefficients are also presented. These results are compared with the calculations based on other theories commonly used to describe electrolyte solutions, such as the mean spherical approximation, Pitzer's extension of the Debye-H\"uckel theory, and the Debye-H\"uckel limiting law.Comment: 15 pages, 6 figure

    Modelling the ion-exchange equilibrium in nanoporous materials

    Full text link
    Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl_2 mixtures, respectively. The matrix, invaded by the primitive model electrolyte mixture, was formed from monovalent negatively charged spherical obstacles. The solution was treated as a continuous dielectric with the properties of pure water. Comparison of the pair distribution functions (obtained by the two methods) between the various ionic species indicated a good agreement between the replica Ornstein-Zernike results and machine calculations. Among thermodynamic properties, the mean activity coefficient of the invaded electrolyte components was calculated. Simple model for the ion-exchange resin was proposed. The selectivity calculations yielded qualitative agreement with the following experimental observations: (i) selectivity increases with the increasing capacity of the adsorbent (matrix concentration), (ii) the adsorbent is more selective for the ion having higher charge density if its fraction in mixture is smaller.Comment: 12 pages, 9 figure

    An evaluation of emerging vaccines for childhood meningococcal disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningococcal meningitis is a major cause of disease worldwide, with frequent epidemics particularly affecting an area of sub-Saharan Africa known as the “meningitis belt”. <it>Neisseria meningitidis</it> group A (MenA) is responsible for major epidemics in Africa. Recently W-135 has emerged as an important pathogen. Currently, the strategy for control of such outbreaks is emergency use of meningococcal (MC) polysaccharide vaccines, but these have a limited ability to induce herd immunity and elicit an adequate immune response in infant and young children. In recent times initiatives have been taken to introduce meningococcal conjugate vaccine in these African countries. Currently there are two different types of MC conjugate vaccines at late stages of development covering serogroup A and W-135: a multivalent MC conjugate vaccine against serogroup A,C,Y and W-135; and a monovalent conjugate vaccine against serogroup A. We aimed to perform a structured assessment of these emerging meningococcal vaccines as a means of reducing global meningococal disease burden among children under 5 years of age.</p> <p>Methods</p> <p>We used a modified CHNRI methodology for setting priorities in health research investments. This was done in two stages. In the first stage we systematically reviewed the literature related to emerging MC vaccines relevant to 12 criteria of interest. In Stage II, we conducted an expert opinion exercise by inviting 20 experts (leading basic scientists, international public health researchers, international policy makers and representatives of pharmaceutical companies). They answered questions from CHNRI framework and their “collective optimism” towards each criterion was documented on a scale from 0 to 100%.</p> <p>Results</p> <p>For MenA conjugate vaccine the experts showed very high level of optimism (~ 90% or more) for 7 out of the 12 criteria. The experts felt that the likelihood of efficacy on meningitis was very high (~ 90%). Deliverability, acceptability to health workers, end users and the effect on equity were all seen as highly likely (~ 90%). In terms of the maximum potential impact on meningitis disease burden, the median potential effectiveness of the vaccines in reduction of overall meningitis mortality was estimated to be 20%; (interquartile range 20-40% and min. 8%, max 50 %). For the multivalent meningococcal vaccines the experts had similar optimism for most of the 12 CHNRI criteria with slightly lower optimism in answerability and low development cost criteria. The main concern was expressed over the cost of product, its affordability and cost of implementation.</p> <p>Conclusions</p> <p>With increasing recognition of the burden of meningococcal meningitis, especially during epidemics in Africa, it is vitally important that strategies are taken to reduce the morbidity and mortality attributable to this disease. Improved MC vaccines are a promising investment that could substantially contribute to reduction of child meningitis mortality world-wide.</p

    Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.

    Get PDF
    BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating

    A new approach to the immobilisation of technetium and transuranics: Co-disposal in a zirconolite ceramic matrix

    Get PDF
    Technetium and transuranic elements (TRUs) are long-lived radionuclides, produced as a result of nuclear power generation. Co-immobilisation of these radionuclides in a ceramic wasteform is attractive as they are problematic for vitrification and would reduce the demand on a future geological disposal facility. A range of zirconolite ceramics have been produced via an oxide route using the surrogates Mo and Ce with a view to the co-immobilisation of Tc and TRUs. The resultant materials were characterised by XRD, SEM-EDX, TEM and XAS. Final phase assemblage was found to be affected by target stoichiometry, the Ca precursor used, processing temperature and processing atmosphere. Through appropriate optimisation of processing conditions and target stoichiometry, the results of this study show co-immobilisation of Tc and TRUs is a promising approach

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe
    corecore