1,212 research outputs found
Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes
We investigate hole transport in polymer light-emitting-diodes in which the
emissive layer is made of liquid-crystalline polymer chains aligned
perpendicular to the direction of transport. Calculations of the current as a
function of time via a random-walk model show excellent qualitative agreement
with experiments conducted on electroluminescent polyfluorene demonstrating
non-dispersive hole transport. The current exhibits a constant plateau as the
charge carriers move with a time-independent drift velocity, followed by a long
tail when they reach the collecting electrode. Variation of the parameters
within the model allows the investigation of the transition from non-dispersive
to dispersive transport in highly aligned polymers. It turns out that large
inter-chain hopping is required for non-dispersive hole transport and that
structural disorder obstructs the propagation of holes through the polymer
film.Comment: 4 pages, 5 figure
Dominant aerosol processes during high-pollution episodes over Greater Tokyo
This paper studies two high-pollution episodes over Greater Tokyo: 9 and 10
December 1999, and 31 July and 1 August 2001. Results obtained with the
chemistry-transport model (CTM) Polair3D are compared to measurements of
inorganic PM2.5. To understand to which extent the aerosol processes modeled in
Polair3D impact simulated inorganic PM2.5, Polair3D is run with different
options in the aerosol module, e.g. with/without heterogeneous reactions. To
quantify the impact of processes outside the aerosol module, simulations are
also done with another CTM (CMAQ). In the winter episode, sulfate is mostly
impacted by condensation, coagulation, long-range transport, and deposition to
a lesser extent. In the summer episode, the effect of long-range transport
largely dominates. The impact of condensation/evaporation is dominant for
ammonium, nitrate and chloride in both episodes. However, the impact of the
thermodynamic equilibrium assumption is limited. The impact of heterogeneous
reactions is large for nitrate and ammonium, and taking heterogeneous reactions
into account appears to be crucial in predicting the peaks of nitrate and
ammonium. The impact of deposition is the same for all inorganic PM2.5. It is
small compared to the impact of other processes although it is not negligible.
The impact of nucleation is negligible in the summer episode, and small in the
winter episode. The impact of coagulation is larger in the winter episode than
in the summer episode, because the number of small particles is higher in the
winter episode as a consequence of nucleation.Comment: Journal of Geophysical Research D: Atmospheres (15/05/2007) in pres
Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII
More than ten state-of-the-art regional air quality models have been applied as part of the Air Quality Model Evaluation International Initiative (AQMEII). These models were run by twenty independent groups in Europe and North America. Standardised modelling outputs over a full year (2006) from each group have been shared on the web-distributed ENSEMBLE system, which allows for statistical and ensemble analyses to be performed by each group. The estimated ground-level ozone mixing ratios from the models are collectively examined in an ensemble fashion and evaluated against a large set of observations from both continents. The scale of the exercise is unprecedented and offers a unique opportunity to investigate methodologies for generating skilful ensembles of regional air quality models outputs. Despite the remarkable progress of ensemble air quality modelling over the past decade, there are still outstanding questions regarding this technique. Among them, what is the best and most beneficial way to build an ensemble of members? And how should the optimum size of the ensemble be determined in order to capture data variability as well as keeping the error low? These questions are addressed here by looking at optimal ensemble size and quality of the members. The analysis carried out is based on systematic minimization of the model error and is important for performing diagnostic/probabilistic model evaluation. It is shown that the most commonly used multi-model approach, namely the average over all available members, can be outperformed by subsets of members optimally selected in terms of bias, error, and correlation. More importantly, this result does not strictly depend on the skill of the individual members, but may require the inclusion of low-ranking skill-score members. A clustering methodology is applied to discern among members and to build a skilful ensemble based on model association and data clustering, which makes no use of priori knowledge of model skill. Results show that, while the methodology needs further refinement, by optimally selecting the cluster distance and association criteria, this approach can be useful for model applications beyond those strictly related to model evaluation, such as air quality forecasting. (C) 2012 Elsevier Ltd. All rights reserved.Peer reviewe
Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)
X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy
have been used to study the well-known order-disorder transition (ODT) to the
beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through
combination of time-dependent and temperature-dependent measurements. The ODT
is well described by a simple Avrami picture of one-dimensional nucleation and
growth but crystallization, on cooling, proceeds only after molecular-level
conformational relaxation to the so called beta phase. Rapid thermal quenching
is employed for PF8 studies of pure alpha phase samples while extended
low-temperature annealing is used for improved beta phase formation. Low
temperature PL studies reveal sharp Franck-Condon type emission bands and, in
the beta phase, two distinguishable vibronic sub-bands with energies of
approximately 199 and 158 meV at 25 K. This improved molecular level structural
order leads to a more complete analysis of the higher-order vibronic bands. A
net Huang-Rhys coupling parameter of just under 0.7 is typically observed but
the relative contributions by the two distinguishable vibronic sub-bands
exhibit an anomalous temperature dependence. The PL studies also identify
strongly correlated behavior between the relative beta phase 0-0 PL peak
position and peak width. This relationship is modeled under the assumption that
emission represents excitons in thermodynamic equilibrium from states at the
bottom of a quasi-one-dimensional exciton band. The crystalline phase, as
observed in annealed thin-film samples, has scattering peaks which are
incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure
Quantitative description of temperature induced self-aggregation thermograms determined by differential scanning calorimetry
A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model
The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation
The ability to ensure continuous availability of energy despite highly variable
supplies in the environment is a major determinant of the survival of all
species. In higher organisms, including mammals, the capacity to efficiently
store excess energy as triglycerides in adipocytes, from which stored energy
could be rapidly released for use at other sites, was developed. To orchestrate
the processes of energy storage and release, highly integrated systems operating
on several physiological levels have evolved. The adipocyte is no longer
considered a passive bystander, because fat cells actively secrete many members
of the cytokine family, such as leptin, tumor necrosis factor-alpha, and
interleukin-6, among other cytokine signals, which influence peripheral fuel
storage, mobilization, and combustion, as well as energy homeostasis. The
existence of a network of adipose tissue signaling pathways, arranged in a
hierarchical fashion, constitutes a metabolic repertoire that enables the
organism to adapt to a wide range of different metabolic challenges, such as
starvation, stress, infection, and short periods of gross energy excess
Group 6 metal carbonyl complexes of cyclo-(P 5 Ph 5 )
Group 6 metal (Cr, Mo, W) carbonyl complexes react with cyclo-(P 5 Ph 5 ) to afford the phosphorus-rich complexes [Cr(CO) 5 {cyclo-(P 5 Ph 5 )-κP 1 }] (1), [{Cr(CO) 5 } 2 {μ-cyclo-(P 5 Ph 5 )-κP 1 ,P 3 }] (2), [M(CO) 4 {cyclo-(P 5 Ph 5 )-κP 1 ,P 3 }] (with M=Cr (3), Mo (4), W (exo-5, endo-5)) depending on the reaction conditions. Complexes 1-5 were characterised by 31 P{ 1 H} NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. The cyclopentaphosphane remains intact and acts as monodentate (1), bridging (2) or bidentate (3-5) ligand. Compounds exo-5 and endo-5 are configurational isomers and essentially differ in the orientations adopted by the phenyl rings attached to the uncoordinated phosphorus atoms. The 31 P{ 1 H} NMR spectra show five multiplets for an ABCDE spin system. Theoretical calculations showed that exo-5 and endo-5 are practically isoenergetic, which is in good agreement with the observed equilibrium in solution between exo-5 and endo-5. The thermal properties of the complexes have also been evaluated
12-Vertex Zwitterionic Bis-phosphonium-nido-carborates through Ring-Opening Reactions of 1,2-Diphosphetanes
Carborane-substituted 1,2-diphosphetanes (Ia,b) react with elemental lithium in THF with cleavage of the P−P bond to give a deep red solution from which, in the case of Ia, red crystals of a lithiated intermediate, [{1-Li(THF)PtBu-6-PtBu-4,1,6-closo-Li(THF)C2B10H10}{Li(THF)3}]2⋅2 THF (2 a), are obtained. The compound is dimeric, C2-symmetric and contains six lithium and four phosphorus atoms. Two lithium atoms cap the six-membered C2B4 faces, resulting in two 13-vertex closo-clusters (according to Wade's rules) with docosahedral geometry. The addition of methyl iodide resulted in the formation of zwitterionic bis-phosphonium-nido-carborates 7,10-bis(tert-butyldimethylphosphonium)dodecahydro-7,10-dicarba-nido-dodecaborate(2−) (1 a) and 7,10-bis(N,N-diisopropylaminodimethylphosphonium)dodecahydro-7,10-dicarba-nido-dodecaborate(2−) (1 b) in moderate to good yields. Compounds 1 a and 1 b exhibit short Ccluster−P bonds and large Ccluster⋅⋅⋅Ccluster distances in the solid state. Further insight into the ring opening and reduction potential of the alkyl halide was obtained from methylation reactions of different 1,2-bis-phosphinocarboranes. The reaction of rac-/meso-1,2-bis(tert-butylmethylphosphino)-1,2-dicarba-closo-dodecaborane(12) (3 a) with two equivalents of methyl iodide also resulted in the formation of 1 a (as shown by NMR spectroscopy), whereas the reaction of 1,2-bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane(12) with methyl triflate afforded the phosphonium salt 1-methyl-diphenylphosphonium-2-diphenylphosphino-1,2-dicarba-closo-dodecaborane(12) triflate (4) without reduction of the cluster
Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA
Inclusive charm and beauty cross sections are measured in e − p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5≤Q 2≤2000 GeV2 and Bjorken scaling variable 0.0002≤x≤0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb−1. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions
Combined measurement and QCD analysis of the inclusive e(+/-)p scattering cross sections at HERA
A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result
- …
