161 research outputs found

    Phase II prospective randomized trial of weight loss prior to radical prostatectomy.

    Get PDF
    BACKGROUND:Obesity is associated with poorly differentiated and advanced prostate cancer and increased mortality. In preclinical models, caloric restriction delays prostate cancer progression and prolongs survival. We sought to determine if weight loss (WL) in men with prostate cancer prior to radical prostatectomy affects tumor apoptosis and proliferation, and if WL effects other metabolic biomarkers. METHODS:In this Phase II prospective trial, overweight and obese men scheduled for radical prostatectomy were randomized to a 5-8 week WL program consisting of standard structured energy-restricted meal plans (1200-1500 Kcal/day) and physical activity or to a control group. The primary endpoint was apoptotic index in the radical prostatectomy malignant epithelium. Secondary endpoints were proliferation (Ki67) in the radical prostatectomy tissue, body weight, body mass index (BMI), waist to hip ratio, body composition, and serum PSA, insulin, triglyceride, cholesterol, testosterone, estradiol, leptin, adiponectin, interleukin 6, interleukin 8, insulin-like growth factor 1, and IGF binding protein 1. RESULTS:In total 23 patients were randomized to the WL intervention and 21 patients to the control group. Subjects in the intervention group had significantly more weight loss (WL:-3.7 ± 0.5 kg; Control:-1.6 ± 0.5 kg; p = 0.007) than the control group and total fat mass was significantly reduced (WL:-2.1 ± 0.4; Control: 0.1 ± 0.3; p = 0.015). There was no significant difference in apoptotic or proliferation index between the groups. Among the other biomarkers, triglyceride, and insulin levels were significantly decreased in the WL compared with the control group. CONCLUSIONS:In summary, this short-term WL program prior to radical prostatectomy resulted in significantly more WL in the intervention vs. the control group and was accompanied by significant reductions in body fat mass, circulating triglycerides, and insulin. However, no significant changes were observed in malignant epithelium apoptosis or proliferation. Future studies should consider a longer term or more intensive weight loss intervention

    Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation

    Full text link
    [EN] Polymer films based on ethylene vinyl copolymers (EVOH) containing a 29 % (EVOH 29) and a 44 % molar percentage of ethylene (EVOH 44), and incorporating epsilon-polylysine (EPL) at 0 %, 1 %, 5 % and 10 % were successfully made by casting. The optical properties and the amount of EPL released from the films to phosphate buffer at pH 7.5 were evaluated, films showing great transparency and those of EVOH 29 copolymer releasing a greater amount of EPL. The antimicrobial properties of the resulting films were tested in vitro against different foodborne microorganisms and in vivo in surimi sticks. With regard to the antimicrobial capacity tested in vitro in liquid medium at 37 A degrees C and 4 A degrees C against Listeria monocytogenes and Escherichia coli over a period of 72 h, films showed a considerable growth inhibitory effect against both pathogens, more notably against L. monocytogenes, and being EVOH 29 more effective than EVOH 44 films. At 37 A degrees C, total growth inhibition was observed for EVOH 29 films incorporating 10 % EPL against both microorganisms whereas the copolymer EVOH 44 did show total inhibition against L. monocytogenes and the growth of E. coli was reduced by 6.64 log units. At 4 A degrees C, no film was able to inhibit completely bacterial growth. Scanning electron microscopy micrographs showed corrugated cell surfaces with blisters and bubbles, and collapse of the cells appearing shorter and more compact after treatment with EPL. Finally, the films were successfully used to increase the shelf life of surimi sticks. The results show the films developed have a great potential for active food packaging applications.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, projects AGL2012-39920-C03-01, and fellowship funding for V. M.-G.Muriel-Galet, V.; Lopez-Carballo, G.; Gavara Clemente, R.; Hernández-Muñoz, P. (2014). Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation. Food and Bioprocess Technology. 7(12):3548-3559. https://doi.org/10.1007/s11947-014-1363-1S35483559712Adams, M. R., & Moss, M. O. (2008). Food microbiology. UK: The Royal Society of Chemistry Cambridge.Aucejo, S., Catala, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films. Food Science and Technology International, 6(2), 159–164.Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, 75(9), 557–563.Buchanan, R. L., & Doyle, M. P. (1997). Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E-coli. Food Technology, 51(10), 69–76.Chang, S.-S., Lu, W.-Y. W., Park, S.-H., & Kang, D.-H. (2010). Control of foodborne pathogens on ready-to-eat roast beef slurry by epsilon-polylysine. International Journal of Food Microbiology, 141(3), 236–241.Chang, Y., McLandsborough, L., & McClements, D. J. (2012). Cationic antimicrobial (epsilon-polylysine)-anionic polysaccharide (Pectin) interactions: influence of polymer charge on physical stability and antimicrobial efficacy. Journal of Agricultural and Food Chemistry, 60(7), 1837–1844.Chi-Zhang, Y. D., Yam, K. L., & Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90(1), 15–22.Coton, M., Denis, C., Cadot, P., & Coton, E. (2011). Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiology, 28(2), 252–260.FAO (2005) Further processing of fish Fisheries and Aquaculture Department, Rome. Updated 27 May 2005 Retrieved 14 March 2011.FDA (2004) Agency reponse letter GRAS Notice No. GRN 00135.Gambarin, P., Magnabosco, C., Losio, M. N., Pavoni, E., Gattuso, A., Arcangeli, G., et al. (2012). Listeria monocytogenes in ready-to-rat seafood and potential hazards for the consumers. International Journal of Microbiology, 2012, 497–635.Geornaras I, Yoon Y., Belk K. E., Smith G. C., Sofos J. N. (2007). Antimicrobial activity of epsilonpolylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. Journal of Food Science, 72(8), M330–4.Gunlu, A., & Koyun, E. (2013). Effects of vacuum packaging and wrapping with chitosan-based edible film on the extension of the shelf life of sea bass (Dicentrarchus labrax) fillets in cold storage (4 A degrees C). Food and Bioprocess Technology, 6(7), 1713–1719.Hiraki, J. (1995). Basic and applied studies on ε-polylysine. Journal of Antibacterial Antifungal Agents Japan, 23, 349–493.Hiraki, J. (2000). ε-Polylysine, its development and utilization. Fine Chemistry, 29, 18–25.Hiraki, J., Ichikawa, T., Ninomiya, S., Seki, H., Uohama, K., Kimura, S., et al. (2003). Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37(2), 328–340.Ho, Y. T., Ishizaki, S., & Tanaka, M. (2000). Improving emulsifying activity of epsilon-polylysine by conjugation with dextran through the Maillard reaction. Food Chemistry, 68(4), 449–455.Huss, H. H., Jorgensen, L. V., & Vogel, B. F. (2000). Control options for Listeria monocytogenes in seafoods. International Journal of Food Microbiology, 62(3), 267–274.Kaneko, K., Hayashidani, H., Ohtomo, Y., Kosuge, J., Kato, M., Takahashi, K., et al. (1999). Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. Journal of Food Protection, 62(6), 644–649.Kang, E. T., Tan, K. L., Kato, K., Uyama, Y., & Ikada, Y. (1996). Surface modification and functionalization of polytetrafluoroethylene films. Macromolecules, 29(21), 6872–6879.Li, J., Han, Q., Chen, W., & Ye, L. (2012). Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. Journal of the Science of Food and Agriculture, 92(11), 2358–2365.Lopez de Dicastillo, C., Nerin, C., Alfaro, P., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2011). Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. Journal of Agricultural and Food Chemistry, 59(14), 7832–7840.Lopez-de-Dicastillo, C., Alonso, J. M., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) dilms. Journal of Agricultural and Food Chemistry, 58(20), 10958–10964.Lopez-de-Dicastillo, C., Pezo, D., Nerin, C., Lopez-Carballo, G., Catala, R., Gavara, R., et al. (2012). Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packaging Technology and Science, 25(8), 457–466.M100-S22 (2012) Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement. Clinical and Laboratory Standards Institute. Advancing Quality in Health Care Testing. Vol. 32 No. 3. Replaces M100-S21 . Vol. 31 No. 1Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157:H7. Lancet, 352(9135), 1207–1212.Miya, S., Takahashi, H., Ishikawa, T., Fujii, T., & Kimura, B. (2010). Risk of Listeria monocytogenes xontamination of raw ready-to-eat seafood products available at retail outlets in Japan. Applied and Environmental Microbiology, 76(10), 3383–3386.Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Lara, M., Gavara, R., & Hernandez-Munoz, P. (2012a). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, 157(2), 195–201.Muriel-Galet, V., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2012b). Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology, 157(2), 239–244.Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Aucejo, S., Gavara, R., & Hernandez-Munoz, P. (2013a). Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control, 30(1), 137–143.Muriel-Galet, V., López-Carballo, G., Hernández-Muñoz, P., & Gavara, R. (2013b). Characterization of ethylene–vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packaging and Shelf Life, 1, 10–17.Park, J. W. (2014). Surimi and surimi seafood. Boca Raton: CRC Press.Shima, S., & Sakai, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41(9), 1807–1809.Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of epsilon-poly-l-lysine. Journal of Antibiotics, 37(11), 1449–1455.Singh, R. K., & Balange, A. K. (2005). Characteristics of pink perch (Nemipterus japonicus) surimi at frozen temperature. Journal of Food Processing and Preservation, 29(1), 75–83.Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420.Ting, H. Y., Ishizaki, S., & Tanaka, M. (1999). Epsilon-polylysine improves the quality of surimi products. Journal of Muscle Foods, 10(4), 279–294.Tzschoppe, M., Martin, A., & Beutin, L. (2012). A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. International Journal of Food Microbiology, 152(1–2), 19–30.Uchida, E., Uyama, Y., & Ikada, Y. (1993). Sorption of low-molecular-weight anions into thin polycation layers grafted onto a film. Langmuir, 9(4), 1121–1124.Unalan, I. U., Ucar, K. D. A., Arcan, I., Korel, F., & Yemenicioglu, A. (2011). Antimicrobial potential of polylysine in edible films. Food Science and Technology Research, 17(4), 375–380.Venugopal, V., & Shahidi, F. (1995). Value-added products from underutilized fish species. Critical Reviews in Food Science and Nutrition, 35(5), 431–453.Zambuchini, B., Fiorini, D., Verdenelli, M. C., Orpianesi, C., & Ballini, R. (2008). Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. LWT--Food Science and Technology, 41(9), 1733–1738.Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49–59

    Cooperative thermal and optical switching of spin states in a new two-dimensional coordination polymer

    Get PDF
    {Fe(pmd)2[Cu(CN)2]2} (pmd = pyrimidine) displays a rigid two-dimensional structure and undergoes thermal- and optical-driven spin crossover behaviour; cooperative elastic coupling between iron(II) ions in the framework induces thermal hysteresis in the HS↔LS conversion and sigmoidal HS→LS relaxation of the photo-induced HS state at low temperatures.Niel, Virginie, [email protected] ; Galet Domingo, Ana Guadalupe, [email protected] ; Gaspar Pedros, Ana Belen, [email protected] ; Real Cabezos, Jose Antonio, [email protected]

    Grape yield and must composition of "Cabernet Sauvignon" grapevines with organic compost and urea fertilization.

    Get PDF
    Urea and organic compost are applied as a nitrogen (N) source in vineyards. The aim of this study was to evaluate the yield, total N content in the leaves and the must composition in grapevines with the application of organic compost and urea. ?Cabernet Sauvignon? grapevines, in the 2008/2009 and 2009/2010 crop seasons were subjected to the application of 40 kg N ha-1 in the form of organic compost and urea; but there were also unfertilized grapevines. In both crop seasons, leaves were collected at the stages of full flowering and at the change in color of the berries, and the total N content were analyzed; grape yield was evaluated and enological attributes were determined in the must. The application of organic compost and urea did not affect the N content in the leaf nor the grape yield in the second crop season evaluated. However, in the first crop season, grape yield was greater in the grapevines with application of organic compost to the soil. The addition of N sources did not affect the total nutrient content in the must but, in the second crop season, the grape must from the grapevines with the addition of organic compost had a lower soluble solids concentration and a higher total acidity value, as well as tartaric and malic acid values. KEYWORDS: nitrogen, leaf analysis, Vitis vinifera L

    Control of metallo-supramolecular assemblies via steric, hydrogen bonding and argentophilic interactions; formation of a 3-dimensional polymer of circular helicates

    Get PDF
    This work shows how multiple non-covalent interactions are employed to control metallosupramolecular architectures and we demonstrate that a ligand, which contains two bidentate domains separated by a ArOH spacer, forms a mesocate when complexed with Ag(I). However, changing this to an ArOCH2CH2Ph spacer unit results in a 1-dimensional helical polymer upon reaction with the same cation. Reaction of Ag(I) with the ArOMe derivative gives a hexanuclear circular helicate which forms inter-assembly Ag⋯Ag interactions resulting in a 3-dimensional honeycomb-like polymer of hexanuclear circular helicates

    Genetic structure and differentiation in cultivated fig (Ficus carica L.)

    Get PDF
    One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (HG/HT = 0.853; 85.3%) and the among groups within total component (GGT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (GGC = 0.094) and ~36% among clusters (GCT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig

    222^{222}Rn contamination mechanisms on acrylic surfaces

    Full text link
    In this work, the 222^{222}Rn contamination mechanisms on acrylic surfaces have been investigated. 222^{222}Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks to its purity and transparency. Four acrylic samples have been exposed to a 222^{222}Rn rich environment for different time periods, being contaminated by 222^{222}Rn and its progenies. Subsequently, the time evolution of radiocontaminants activity on the samples has been evaluated with α\alpha and γ\gamma measurements, highlighting the role of different decay modes in the contamination process. A detailed analysis of the alpha spectra allowed to quantify the implantation depth of the contaminants. Moreover, a study of both α\alpha and γ\gamma measurements pointed out the 222^{222}Rn diffusion inside the samples

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore