516 research outputs found

    Cell Cytoskeleton Dynamics: Mechano-Sensing Properties

    Get PDF
    `The actin cytoskeleton network is the dominant structure of eukaryotic cells. It is highlydynamic and plays a central role in a wide range of mechanical and biological functions.Cytoskeleton is composed mainly of actin filaments (F-actin) resulting from the self-assemblyof monomeric actin (G-actin) and cross-linked by actin cross-linking proteins (ACPs) whosenature and concentration determine the morphological and rheological properties of thenetwork. These actin filaments are reversibly coupled to membrane proteins (critical to theresponse of cells to external stress) and in conjunction with motor proteins from the myosinfamily, are able to generate contractile force during cell migration. Knowledge of actincytoskeleton and its rheological properties is therefore indispensable for understanding theunderlying mechanics and various biological processes of cells. Here, we present a 3-DBrownian dynamics (BD) computational model in which actin monomers polymerize andbecome cross-linked by two types of ACPs, forming either parallel filament bundles ororthogonal networks. Also, the active and dynamic behaviour of motors is included. In thissimulation, actin monomers, filaments, ACPs, and motors experience thermal motion andinteract with each other with binding probabilities and defined potentials. Displacements aregoverned by the Langevin equation, and positions of all elements are updated using the Eulerintegration scheme.In this first part of the work, the mechano-sensing properties of active networks are investigatedby evaluating stress and strain rate in response to different substrate stiffness

    Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03

    Get PDF
    Hydrostatic pressure represents an inexpensive and practical method of driving caloric effects in brittle magnetocaloric materials, which display first-order magnetostructural phase transitions whose large latent heats are traditionally accessed using applied magnetic fields. Here, moderate changes of hydrostatic pressure are used to drive giant and reversible inverse barocaloric effects near room temperature in the notoriously brittle magnetocaloric material MnCoGeB0.03. The barocaloric effects compare favorably with those observed in barocaloric materials that are magnetic. The inevitable fragmentation provides a large surface for heat exchange with pressure-transmitting media, permitting good access to barocaloric effects in cooling devices.Peer ReviewedPostprint (author's final draft

    L’intégration du développement durable au sein des manifestations, à travers des guides de «bonnes pratiques»

    Get PDF
    Ce travail a pour but d’analyser la façon dont le développement durable est appliqué dans le monde de l’événementiel. Pour ce faire, la première partie de ce travail amène une définition du développement durable et présente un état des lieux actuel de son application au 21ème siècle. Dans un deuxième temps, 19 guides de bonnes pratiques indiquant comment organiser une manifestation durable, provenant de Suisse, d’Angleterre, du Canada ou encore d’Espagne, ont été analysés. Toutes les pratiques exposées à travers ces guides ont été répertoriées afin d’être analysées part des indicateurs durables. De cette première analyse, les pratiques ayant obtenus le plus de points sont reprises dans ce travail, commentées et présentées de façon à ce que toute personne puisse comprendre pourquoi une pratique est durable

    Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria

    Get PDF
    [EN] An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies. In this work, a mesoporous bioglass functionalized with polyamines and capped with adenosine triphosphate (ATP) as the molecular gate was developed for the controlled release of the antibiotic levofloxacin. Phosphate bonds of ATP were hydrolyzed in the presence of acid phosphatase (APase), the concentration of which is significantly increased in bone infection due to the activation of bone resorption processes. The solid was characterized and tested successfully against bacteria. The final gated solid induced bacterial death only in the presence of acid phosphatase. Additionally, it was demonstrated that the solid is not toxic against human cells. The double function of the prepared material as a drug delivery system and bone regeneration enhancer confirms the possible development of a new approach in the tissue engineering field, in which controlled release of therapeutic agents can be finely tuned and, at the same time, osteoinduction is favored.The authors thank the Spanish Government for projects MAT2015-64139-C04-01-R, MAT2015-64831-R and MAT2016-75611-R (AEI/FEDER, UE). Generalitat Valenciana (project PROMETEOII/2014/047) and CIBER-BBN (project SPRING) are also acknowledged for their support. M.V.R. acknowledges funding from the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal 694160). L.P. thanks Universitat Politecnica de Valencia for her FPI grant. N.G.C. and A.G. thank to Ministerio de Ciencia e Innovacion and Ministerio de Educacion, Cultura y Deporte for their predoctoral fellowships. The authors also thank the Electron Microscopy Service at the UPV for their support.Polo, L.; Gómez-Cerezo, N.; García-Fernández, A.; Aznar, E.; Vivancos, J.; Arcos, D.; Vallet, M.... (2018). Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry - A European Journal. 24(71):18944-18951. https://doi.org/10.1002/chem.201803301S18944189512471Li, J., & Wang, H.-L. (2008). Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dentistry, 17(4), 389-401. doi:10.1097/id.0b013e31818c4992Herford, A. S., & Dean, J. S. (2011). Complications in Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23(3), 433-442. doi:10.1016/j.coms.2011.04.004Arciola, C. R., Visai, L., Testoni, F., Arciola, S., Campoccia, D., Speziale, P., & Montanaro, L. (2011). Concise Survey ofStaphylococcus AureusVirulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. The International Journal of Artificial Organs, 34(9), 771-780. doi:10.5301/ijao.5000046Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2015). A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 72, 128-136. doi:10.1016/j.bone.2014.11.019Gerhardt, L.-C., & Boccaccini, A. R. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials, 3(7), 3867-3910. doi:10.3390/ma3073867Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00202Hench, L. (1980). Biomaterials. Science, 208(4446), 826-831. doi:10.1126/science.6246576Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592tYan, X. X., Deng, H. X., Huang, X. H., Lu, G. Q., Qiao, S. Z., Zhao, D. Y., & Yu, C. Z. (2005). Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 351(40-42), 3209-3217. doi:10.1016/j.jnoncrysol.2005.08.024Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984. doi:10.1002/anie.200460598Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie, 116(44), 6106-6110. doi:10.1002/ange.200460598Gómez-Cerezo, N., Izquierdo-Barba, I., Arcos, D., & Vallet-Regí, M. (2015). Tailoring the biological response of mesoporous bioactive materials. Journal of Materials Chemistry B, 3(18), 3810-3819. doi:10.1039/c5tb00268kHench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. doi:10.1002/jbm.820050611Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593. doi:10.1039/b922651fArcos, D., & Vallet-Regí, M. (2013). Bioceramics for drug delivery. Acta Materialia, 61(3), 890-911. doi:10.1016/j.actamat.2012.10.039Zhu, Y., & Kaskel, S. (2009). Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 118(1-3), 176-182. doi:10.1016/j.micromeso.2008.08.046Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 15(1), 93-114. doi:10.1080/17425247.2017.1360863Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., … Guo, S. (2016). Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 29(5), 1603864. doi:10.1002/adma.201603864Li, B. L., Setyawati, M. I., Chen, L., Xie, J., Ariga, K., Lim, C.-T., … Leong, D. T. (2017). Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 9(18), 15286-15296. doi:10.1021/acsami.7b02529Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090Vivero-Escoto, J. L., Slowing, I. I., Wu, C.-W., & Lin, V. S.-Y. (2009). Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. Journal of the American Chemical Society, 131(10), 3462-3463. doi:10.1021/ja900025fSun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876López-Noriega, A., Ruiz-Hernández, E., Quinlan, E., Storm, G., Hennink, W. E., & O’Brien, F. J. (2014). Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 187, 158-166. doi:10.1016/j.jconrel.2014.05.043Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563gKim, H.-J., Matsuda, H., Zhou, H., & Honma, I. (2006). Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 18(23), 3083-3088. doi:10.1002/adma.200600387Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631Zhang, Z., Balogh, D., Wang, F., Tel-Vered, R., Levy, N., Sung, S. Y., … Willner, I. (2013). Light-induced and redox-triggered uptake and release of substrates to and from mesoporous SiO2 nanoparticles. Journal of Materials Chemistry B, 1(25), 3159. doi:10.1039/c3tb20292eDe la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062bAgostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157kAlberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414ePolo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025Bull, H. (2002). Acid phosphatases. Molecular Pathology, 55(2), 65-72. doi:10.1136/mp.55.2.65Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227Minkin, C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcified Tissue International, 34(1), 285-290. doi:10.1007/bf02411252Raggatt, L. J., & Partridge, N. C. (2010). Cellular and Molecular Mechanisms of Bone Remodeling. Journal of Biological Chemistry, 285(33), 25103-25108. doi:10.1074/jbc.r109.041087Wright, J. A., & Nair, S. P. (2010). Interaction of staphylococci with bone. International Journal of Medical Microbiology, 300(2-3), 193-204. doi:10.1016/j.ijmm.2009.10.003Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487-1510. doi:10.1111/j.1151-2916.1991.tb07132.xHiguchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875. doi:10.1002/jps.2600501018Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210Aznar, E., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., Stroeve, P., Cano, J., & Amorós, P. (2012). Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 28(5), 2986-2996. doi:10.1021/la204438jMathew, R., Turdean-Ionescu, C., Stevensson, B., Izquierdo-Barba, I., García, A., Arcos, D., … Edén, M. (2013). Direct Probing of the Phosphate-Ion Distribution in Bioactive Silicate Glasses by Solid-State NMR: Evidence for Transitions between Random/Clustered Scenarios. Chemistry of Materials, 25(9), 1877-1885. doi:10.1021/cm400487aBrunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a12

    Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

    Full text link
    "This is the peer reviewed version of the following article: Oroval, Mar, Paula Díez, Elena Aznar, Carmen Coll, María Dolores Marcos, Félix Sancenón, Reynaldo Villalonga, and Ramón Martínez-Máñez. 2016. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal 23 (6). Wiley: 1353 60. doi:10.1002/chem.201604104, which has been published in final form at https://doi.org/10.1002/chem.201604104. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H-benzimidazole groups, loaded with fluorescein isothiocyanate-labeled insulin (FITC-Ins) and capped by the formation of inclusion complexes between cyclodextrin-modified glucose oxidase (CD-GOx) and the benzimidazole groups grafted on the mesoporous support. Insulin delivery from the gated material in simulated blood plasma was assessed upon addition of glucose. Glucose is transformed by GOx into gluconic acid, which promoted the dethreading of the benzimidazole-CD-GOx inclusion complexes, allowing cargo release. Small quantities of this support would be needed to release the amount of insulin necessary to decrease diabetic blood glucose concentrations to regular levels.The authors thank the Spanish Government (projects CTQ2011-24355, MAT2015-64139-C4-1-R, CTQ2014-58989-P, and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. M.O. thanks the Universitat Politecnica de Valencia for her FPI grant. P.D. thanks the Ministerio de Economia y Competitividad for her FPI grant (BES-2012-054066). C.C. thanks the Generalitat Valenciana for her postdoctoral contract VALi+D.Oroval, M.; Díez, P.; Aznar, E.; Coll Merino, MC.; Marcos Martínez, MD.; Sancenón Galarza, F.; Villalonga, R.... (2017). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal. 23(6):1353-1360. https://doi.org/10.1002/chem.201604104S13531360236Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788aBeltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032uVallet-Regí, M., & Balas, F. (2008). Silica Materials for Medical Applications. The Open Biomedical Engineering Journal, 2(1), 1-9. doi:10.2174/1874120700802010001Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414eArgyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592tWight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334mKickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Jérôme, C., & Duguet, E. (2015). Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small, 11(19), 2323-2332. doi:10.1002/smll.201402145Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000uHernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424uNiedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245fZhang, X., Li, F., Guo, S., Chen, X., Wang, X., Li, J., & Gan, Y. (2014). Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials, 35(11), 3650-3665. doi:10.1016/j.biomaterials.2014.01.013Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 54(36), 10574-10578. doi:10.1002/anie.201504913Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie, 127(36), 10720-10724. doi:10.1002/ange.201504913Kavruk, M., Celikbicak, O., Ozalp, V. C., Borsa, B. A., Hernandez, F. J., Bayramoglu, G., … Arica, M. Y. (2015). Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chemical Communications, 51(40), 8492-8495. doi:10.1039/c5cc01869bChu, L.-Y. (2005). Controlled release systems for insulin delivery. Expert Opinion on Therapeutic Patents, 15(9), 1147-1155. doi:10.1517/13543776.15.9.1147Suckale, J. (2008). Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience, Volume(13), 7156. doi:10.2741/3218Diabetes Care 2014 37Pickup, J. C., Hussain, F., Evans, N. D., & Sachedina, N. (2005). In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 20(10), 1897-1902. doi:10.1016/j.bios.2004.08.016Farmer, T. G., Edgar, T. F., & Peppas, N. A. (2008). The future of open- and closed-loop insulin delivery systems. Journal of Pharmacy and Pharmacology, 60(1), 1-13. doi:10.1211/jpp.60.1.0001Carino, G. P., & Mathiowitz, E. (1999). Oral insulin delivery1Abbreviations: GI, gastrointestinal; IDDM, insulin-dependent diabetes mellitus; IU, international units; NIDDM, non-insulin-dependent diabetes mellitus; PIN, phase inversion nanoencapsulation; ZOT, zona occludens toxin.1. Advanced Drug Delivery Reviews, 35(2-3), 249-257. doi:10.1016/s0169-409x(98)00075-1Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2015). Oral insulin delivery systems using chitosan-based formulation: a review. Expert Opinion on Drug Delivery, 13(2), 223-237. doi:10.1517/17425247.2016.1107543Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43(10), 3595. doi:10.1039/c3cs60436eSato, K., Imoto, Y., Sugama, J., Seki, S., Inoue, H., Odagiri, T., … Anzai, J. (2005). Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir, 21(2), 797-799. doi:10.1021/la048059xTANNA, S., SAHOTA, T., SAWICKA, K., & TAYLOR, M. (2006). The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials, 27(25), 4498-4507. doi:10.1016/j.biomaterials.2006.04.007Qi, W., Yan, X., Fei, J., Wang, A., Cui, Y., & Li, J. (2009). Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 30(14), 2799-2806. doi:10.1016/j.biomaterials.2009.01.027Ishihara, K., Kobayashi, M., Ishimaru, N., & Shinohara, I. (1984). Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polymer Journal, 16(8), 625-631. doi:10.1295/polymj.16.625Wu, Z., Zhang, X., Guo, H., Li, C., & Yu, D. (2012). An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry, 22(42), 22788. doi:10.1039/c2jm34082hLiu, P., Luo, Q., Guan, Y., & Zhang, Y. (2010). Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer, 51(12), 2668-2675. doi:10.1016/j.polymer.2010.04.011Zhang, X., Guan, Y., & Zhang, Y. (2012). Dynamically bonded layer-by-layer films for self-regulated insulin release. Journal of Materials Chemistry, 22(32), 16299. doi:10.1039/c2jm33413eAkhtar, N., El-Safty, S. A., Abdelsalam, M. E., & Kawarada, H. (2015). One-Pot Fabrication of Dendritic NiO@carbon-nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 4(14), 2110-2119. doi:10.1002/adhm.201500369Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831uZhao, W., Zhang, H., He, Q., Li, Y., Gu, J., Li, L., … Shi, J. (2011). A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 47(33), 9459. doi:10.1039/c1cc12740cJain, R. N., Huang, X., Das, S., Silva, R., Ivanova, V., Minko, T., & Asefa, T. (2014). Functionalized Mesoporous Silica Nanoparticles for Glucose- and pH-Stimulated Release of Insulin. Zeitschrift für anorganische und allgemeine Chemie, 640(3-4), 616-623. doi:10.1002/zaac.201300604Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kMizutani, M., Yamada, Y., Nakamura, T., & Yano, K. (2008). Anomalous Pore Expansion of Highly Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Porous Ferromagnetic Composite. Chemistry of Materials, 20(14), 4777-4782. doi:10.1021/cm702792eKim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H. S., Lee, K. E., … Min, D.-H. (2011). Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 5(5), 3568-3576. doi:10.1021/nn103130qBarrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia 2006Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015Mattu, M. J., Small, G. W., & Arnold, M. A. (1997). Determination of Glucose in a Biological Matrix by Multivariate Analysis of Multiple Band-Pass-Filtered Fourier Transform Near-Infrared Interferograms. Analytical Chemistry, 69(22), 4695-4702. doi:10.1021/ac970552

    AHP choice in cocoa post-harvest technology for small-scale farmers

    Get PDF
    OPEN ACCESS JOURNAL: Articles are distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Ensuring that the post-harvest process yields good quality cocoa is a relevant research question. However, the literature currently lacks detailed studies of producers criteria for post-harvest technology selection. There is therefore a need for research that examines technology choice based on several criteria. This is the aim of our paper. We defined a cocoa post-harvest technology selection model to assist small producers in Ecuador. To do so, we employed the Analytical Hierarchy Process (AHP) to assess the following criteria: quality, processing cost and technology adoption capability. By considering only quality, we first performed a preliminary assessment of nine post-harvest technologies yielded by all possible combinations of fermentation and drying methods. Under the criterion quality , results show that no post-harvest technology is preferable to another. This implies that quality differences between producers do not derive from technology choice but rather from the rigour with which producers perform fermentation and drying processes. After adding the criteria processing cost and technology adoption capability , we performed the analysis again. This multi-criteria approach offered a better way to approximate small farmers real needs when selecting technology for cocoa post-harvest. Although quality was the highest-valued criterion, high scores attributed to some technologies in the other two criteria offset scores for quality. Thus, processing cost and technology adoption also emerged as relevant factors for small holders.The authors wish to thank the Ministry of Economy and Competitiveness (MINECO, Spain) and the European Regional Development Fund in the framework of the Agriinnova project "Organizational forms of innovation in agri-food sector and its effects on economic outcomes and innovation performance" (AGL2012-39793-C03-02) for their financial support. The authors also express their gratitude to the Escuela Superior Politecnica Agropecuaria de Manabi "Manuel Felix Lopez" for their support in the preparation of the experimental fieldwork.Vera Montenegro, L.; Baviera Puig, MA.; García Alvarez-Coque, JM. (2014). AHP choice in cocoa post-harvest technology for small-scale farmers. Spanish Journal of Agricultural Research. 12(3):542-552. https://doi.org/10.5424/sjar/2014123-5467S542552123Abdulai, A., Owusu, V., & Bakang, J.-E. A. (2011). Adoption of safer irrigation technologies and cropping patterns: Evidence from Southern Ghana. Ecological Economics, 70(7), 1415-1423. doi:10.1016/j.ecolecon.2011.03.004Alarcón S, 2011. The trade credit in the Spanish agro-food industry. Mediterr J Econ Agric Environ 10: 51-57.Amores F, 2009. Entorno ambiental, genética, atributos de calidad y singularización del cacao en el nororiente de la provincia de Esmeraldas. INIAP, Quevedo, Ecuador.Aznar Bellver, J., & Caballer Mellado, V. (2005). An application of the analytic hierarchy process method in farmland appraisal. Spanish Journal of Agricultural Research, 3(1), 17. doi:10.5424/sjar/2005031-120Aznar J, Estruch V, 2007. Valoración de activos ambientales mediante métodos multicriterio. Aplicación a la valoración del Parque Natural del Alto Tajo. Econ Agrar Recur Nat 7(13): 107-126.Braudeau J, 1991. Le Cacaoyer. G.-P. Maisonneuve & Larose, Paris, France.Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., … De Vuyst, L. (2007). Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana. Applied and Environmental Microbiology, 73(6), 1809-1824. doi:10.1128/aem.02189-06Castro-Tanzi, S., Dietsch, T., Urena, N., Vindas, L., & Chandler, M. (2012). Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agriculture, Ecosystems & Environment, 155, 172-181. doi:10.1016/j.agee.2012.04.013Central Bank of Ecuador, 2012. Economic statistics. Central Bank of Ecuador, Quito, Ecuador.Chavez, M. D., Berentsen, P. B. M., & Oude Lansink, A. G. J. M. (2012). Assessment of criteria and farming activities for tobacco diversification using the Analytical Hierarchical Process (AHP) technique. Agricultural Systems, 111, 53-62. doi:10.1016/j.agsy.2012.05.006Cheng, E. W. L., & Li, H. (2001). Analytic hierarchy process. Measuring Business Excellence, 5(3), 30-37. doi:10.1108/eum0000000005864Cros E, Jeanjean N, 1995. Qualité du cacao. Influence de la fermentation et du séchage. Plant Rech Dev 2: 25-27.Garcia-Armisen, T., Papalexandratou, Z., Hendryckx, H., Camu, N., Vrancken, G., De Vuyst, L., & Cornelis, P. (2010). Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16 S rRNA gene clone library. Applied Microbiology and Biotechnology, 87(6), 2281-2292. doi:10.1007/s00253-010-2698-9Gatignon H, Robertson TS, 1991. Innovative decision processes. In: Handbook of consumer behavior (Robertson TS, Kassarjian HH, eds). Prentice-Hall, Englewood Cliffs, NJ (USA), pp: 316-348.Golden, B. L., & Wang, Q. (1989). An Alternate Measure of Consistency. The Analytic Hierarchy Process, 68-81. doi:10.1007/978-3-642-50244-6_5INEN, 2006. Cacao en grano. Norma Técnica NTE 176. 1. Instituto Ecuatoriano De Normalización [Ecuadorian Standardisation Institute], Quito, Ecuador.Jinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67-75. doi:10.1002/jsfa.2740650111Karami, E. (2006). Appropriateness of farmers’ adoption of irrigation methods: The application of the AHP model. Agricultural Systems, 87(1), 101-119. doi:10.1016/j.agsy.2005.01.001Kim TW, Kim CW, Kang YS, 2010. A priority of regional agricultural policy using the analytic hierarchy process in Changnyeong. J Korean Soc Int Agric 22: 8-14.Lee, D. R. (2005). Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. American Journal of Agricultural Economics, 87(5), 1325-1334. doi:10.1111/j.1467-8276.2005.00826.xMariano, M. J., Villano, R., & Fleming, E. (2012). Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agricultural Systems, 110, 41-53. doi:10.1016/j.agsy.2012.03.010Mossu G, 1992. Drying in cocoa. The tropical agriculturist. McMiller Press, London, UK.Nielsen, D. S., Teniola, O. D., Ban-Koffi, L., Owusu, M., Andersson, T. S., & Holzapfel, W. H. (2007). The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. International Journal of Food Microbiology, 114(2), 168-186. doi:10.1016/j.ijfoodmicro.2006.09.010Ning H, Shao F, Sun X, Shan J, 2011. AHP-based evaluation on plant landscape of Huagangguanyu Park in Hangzhou. Hortic Sci 23: 717-724.Oracz, J., & Nebesny, E. (2014). Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Research International, 55, 1-10. doi:10.1016/j.foodres.2013.10.032Papalexandratou, Z., Camu, N., Falony, G., & De Vuyst, L. (2011). Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiology, 28(5), 964-973. doi:10.1016/j.fm.2011.01.010Papalexandratou, Z., Falony, G., Romanens, E., Jimenez, J. C., Amores, F., Daniel, H.-M., & De Vuyst, L. (2011). Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations. Applied and Environmental Microbiology, 77(21), 7698-7714. doi:10.1128/aem.05523-11Papalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O. S., Daniel, H.-M., & De Vuyst, L. (2013). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, 35(2), 73-85. doi:10.1016/j.fm.2013.02.015Roco L, Engler A, Jara-Rojas R, 2012. Factores que influyen en la adopción de tecnologías de conservación de suelos en el secano interior de Chile Central. Rev FCA UNCUYO 44: 31-45.Roig-Tierno, N., Baviera-Puig, A., Buitrago-Vera, J., & Mas-Verdu, F. (2013). The retail site location decision process using GIS and the analytical hierarchy process. Applied Geography, 40, 191-198. doi:10.1016/j.apgeog.2013.03.005Saaty TL, 1980. Analytical hierarchy process planning, priority setting, resource allocation. Mc Graw-Hill, NY, USA.Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7), 841-855. doi:10.1287/mnsc.32.7.841Saaty TL, 1988. Decision-making for leaders, the analytical hierarchy process for decision in a complex world. University of Pittsburgh, Pittsburgh, PA, USA.Saaty, T. L. (1990). An Exposition of the AHP in Reply to the Paper «Remarks on the Analytic Hierarchy Process». Management Science, 36(3), 259-268. doi:10.1287/mnsc.36.3.259Saaty TL, 2000. Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publ., Pittsburgh, PA, USA.Saaty TL, 2008. Decision making with the analytic hierarchy process. Int J Serv Sci 1: 83-98.Saaty, T. L., & Vargas, L. G. (1987). Stimulus-response with reciprocal kernels: The rise and fall of sensation. Journal of Mathematical Psychology, 31(1), 83-92. doi:10.1016/0022-2496(87)90037-xShrestha, R. K., Alavalapati, J. R. ., & Kalmbacher, R. S. (2004). Exploring the potential for silvopasture adoption in south-central Florida: an application of SWOT–AHP method. Agricultural Systems, 81(3), 185-199. doi:10.1016/j.agsy.2003.09.004Sidibé, A. (2005). Farm-level adoption of soil and water conservation techniques in northern Burkina Faso. Agricultural Water Management, 71(3), 211-224. doi:10.1016/j.agwat.2004.09.002Stokes, J. R., & Tozer, P. R. (2002). Sire selection with multiple objectives. Agricultural Systems, 73(2), 147-164. doi:10.1016/s0308-521x(01)00079-8Cay, T., & Uyan, M. (2013). Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy, 30(1), 541-548. doi:10.1016/j.landusepol.2012.04.023Wedley, W. C., Schoner, B., & Tang, T. S. (1993). Starting rules for incomplete comparisons in the analytic hierarchy process. Mathematical and Computer Modelling, 17(4-5), 93-100. doi:10.1016/0895-7177(93)90178-2Wood, G. A. R., & Lass, R. A. (Eds.). (2001). Cocoa. doi:10.1002/9780470698983Xu S, 1988. Application of AHP to the determination of the quality class of city ecological environment. Proc Int Symp on the Analytic Hierarchy Process, Tianjin University (Tianjin), China, Sept 6-9.Zhang Y, Zhang W, Dai S, Ji Y, He J, 2011. AHP-based screening of traditional potted chrysanthemum for industrialized production. Sci Agric Sin 44: 4438-4446

    Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains

    Full text link
    [EN] Mesoporous silica nanoparticles loaded with safranin O and capped with disulfide-containing oligo(ethylene glycol) chains were used for the selective and sensitive fluorimetric detection of glutathione.Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valencia (Project PROMETEOII/2014/047) is gratefully acknowledged. S. E. is grateful to the Generalitat Valenciana for his Santiago Grisolia fellow. Also, C. G. is grateful to the Spanish Ministry of Science and Innovation for the grant.El Sayed Shehata Nasr, S.; Giménez Morales, C.; Aznar Gimeno, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic and Biomolecular Chemistry. 13(4):1017-1021. https://doi.org/10.1039/C4OB02083AS1017102113

    Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCζ-mediated phosphorylation of occludin.

    Get PDF
    Airway epithelial tight junction (TJ) proteins form a resistive barrier to the external environment, however, during respiratory bacterial infection TJs become disrupted compromising barrier function. This promotes glucose flux/accumulation into the lumen which acts as a nutrient source for bacterial growth. Metformin used for the treatment of diabetes increases transepithelial resistance (TEER) and partially prevents the effect of bacteria but the mechanisms of action are unclear. We investigated the effect of metformin and Staphylococcus aureus on TJ proteins, zonula occludins (ZO)-1 and occludin in human airway epithelial cells (H441). We also explored the role of AMP-activated protein kinase (AMPK) and PKCζ in metformin-induced effects. Pretreatment with metformin prevented the S. aureus-induced changes in ZO-1 and occludin. Metformin also promoted increased abundance of full length over smaller cleaved occludin proteins. The nonspecific PKC inhibitor staurosporine reduced TEER but did not prevent the effect of metformin indicating that the pathway may involve atypical PKC isoforms. Investigation of TJ reassembly after calcium depletion showed that metformin increased TEER more rapidly and promoted the abundance and localization of occludin at the TJ. These effects were inhibited by the AMPK inhibitor, compound C and the PKCζ pseudosubstrate inhibitor (PSI). Metformin increased phosphorylation of occludin and acetyl-coA-carboxylase but only the former was prevented by PSI. This study demonstrates that metformin improves TJ barrier function by promoting the abundance and assembly of full length occludin at the TJ and that this process involves phosphorylation of the protein via an AMPK-PKCζ pathway

    Transient Brewster angle reflectometry of spiropyran monolayers

    Get PDF
    Brewster angle reflectometry has been developed as a tool for determining the absorbance and refractive index changes in molecular monolayers containing spiropyran. The method is sensitive to changes in both the real and imaginary parts of the refractive index in the monolayers. It was used to monitor the conversion of spiropyran to merocyanine and the reversal of this reaction when the molecules were immobilised on quartz using silane coupling. An analytical solution of Fresnel formula allowed the transient reflectometry data to be converted into transient absorption information. Absorbances of transients as low as ~10-6 were possible using the current apparatus with a single laser pulse transient measurement. It was found that spiropyran photoconverted to merocyanine with an efficiency of ~0.1. The photochemical reversion of converted merocyanine to spiropyran occurred with efficiencies of 0.03–0.2 and this was probably site dependent. It was found that the thermal conversion from merocyanine to spiropyran was slow and even after 10 min there was no significant thermal reversion. This measurement was possible because the real part of the refractive index of the monolayer could be monitored with time using an off-resonance probe at a wavelength where the merocyanine did not absorb light meaning that the probe did not photobleach the sample. Thus our method also provides a non-intrusive method for probing changes in molecules in thin films

    Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles

    Full text link
    "This is the peer reviewed version of the following article: Llopis-Lorente, Antoni, Paula Díez, Cristina de la Torre, Alfredo Sánchez, Félix Sancenón, Elena Aznar, María D. Marcos, Paloma Martínez-Ruíz, Ramón Martínez-Máñez, and Reynaldo Villalonga. 2017. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal 23 (18). Wiley: 4276 81. doi:10.1002/chem.201700603, which has been published in final form at https://doi.org/10.1002/chem.201700603. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular b-cyclodextrin: benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies.A.L.L. is grateful to "La Caixa" Banking Foundation for his PhD fellowship. The authors are gratitude to the Spanish Government (MINECO Projects MAT2012-38429-C04-01, MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT) and the Generalitat Valencia (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Díez, P.; De La Torre-Paredes, C.; Sanchez, A.; Sancenón Galarza, F.; Aznar, E.; Marcos Martínez, MD.... (2017). Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 23(18):4276-4281. https://doi.org/10.1002/chem.201700603S427642812318Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology, 74(6), 363-396. doi:10.1016/j.pneurobio.2004.09.006Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. Molecular Neurobiology, 15(2), 193-222. doi:10.1007/bf02740634Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Progress in Neurobiology, 53(5), 603-625. doi:10.1016/s0301-0082(97)00050-6Leblond, L., Beaufort, C., Delerue, F., & Durkin, T. P. (2002). Differential roles for nicotinic and muscarinic cholinergic receptors in sustained visuo-spatial attention? A study using a 5-arm maze protocol in mice. Behavioural Brain Research, 128(1), 91-102. doi:10.1016/s0166-4328(01)00306-0Nelson, C., Burk, J., Bruno, J., & Sarter, M. (2002). Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacology, 161(2), 168-179. doi:10.1007/s00213-002-1004-7Hasselmo, M. E., & Bower, J. M. (1993). Acetylcholine and memory. Trends in Neurosciences, 16(6), 218-222. doi:10.1016/0166-2236(93)90159-jPepeu, G. (2004). Changes in Acetylcholine Extracellular Levels During Cognitive Processes. Learning & Memory, 11(1), 21-27. doi:10.1101/lm.68104Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. The Lancet Neurology, 5(11), 974-983. doi:10.1016/s1474-4422(06)70600-7Ehrenstein, G., Galdzicki, Z., & Lange, G. D. (1997). The choline-leakage hypothesis for the loss of acetylcholine in Alzheimer’s disease. Biophysical Journal, 73(3), 1276-1280. doi:10.1016/s0006-3495(97)78160-8Reale, M., de Angelis, F., di Nicola, M., Capello, E., di Ioia, M., Luca, G., … Tata, A. (2012). Relation between Pro-inflammatory Cytokines and Acetylcholine Levels in Relapsing-Remitting Multiple Sclerosis Patients. International Journal of Molecular Sciences, 13(12), 12656-12664. doi:10.3390/ijms131012656Brett, R. S., Schmidt, J. H., Cage, J. S., Schartel, S. A., & Poppers, P. J. (1987). Measurement of Acetylcholine Receptor Concentration in Skeletal Muscle from a Patient with Multiple Sclerosis and Resistance to Atracurium. Anesthesiology, 66(6), 837-838. doi:10.1097/00000542-198706000-00025Picconi, B., Passino, E., Sgobio, C., Bonsi, P., Barone, I., Ghiglieri, V., … Calabresi, P. (2006). Plastic and behavioral abnormalities in experimental Huntington’s disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 22(1), 143-152. doi:10.1016/j.nbd.2005.10.009Pisani, A., Bernardi, G., Ding, J., & Surmeier, D. J. (2007). Re-emergence of striatal cholinergic interneurons in movement disorders. Trends in Neurosciences, 30(10), 545-553. doi:10.1016/j.tins.2007.07.008Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., & Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatrics & Gerontology International, 10, S148-S157. doi:10.1111/j.1447-0594.2010.00588.xConnolly, B. S., & Lang, A. E. (2014). Pharmacological Treatment of Parkinson Disease. JAMA, 311(16), 1670. doi:10.1001/jama.2014.3654Levodopa and the Progression of Parkinson’s Disease. (2004). New England Journal of Medicine, 351(24), 2498-2508. doi:10.1056/nejmoa033447Jenner, P. (2002). Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology, 58(Supplement 1), S1-S8. doi:10.1212/wnl.58.suppl_1.s1Stocchi, F. (1998). Dopamine Agonists in Parkinson???s Disease. CNS Drugs, 10(3), 159-170. doi:10.2165/00023210-199810030-00001Takahashi, S., Tohgi, H., Yonezawa, H., Obara, S., & Yamazaki, E. (1999). The effect of trihexyphenidyl, an anticholinergic agent, on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. Journal of the Neurological Sciences, 167(1), 56-61. doi:10.1016/s0022-510x(99)00142-2Olanow, C. W., Agid, Y., & Mizuno, Y. (2005). Reply: Levodopa in the treatment of Parkinson’s disease: Current controversies. Movement Disorders, 20(5), 643-644. doi:10.1002/mds.20426Rascol, O., Payoux, P., Ory, F., Ferreira, J. J., Brefel-Courbon, C., & Montastruc, J.-L. (2003). Limitations of current Parkinson’s disease therapy. Annals of Neurology, 53(S3), S3-S15. doi:10.1002/ana.10513M�ller, T., Hefter, H., Hueber, R., Jost, W., Leenders, K., Odin, P., & Schwarz, J. (2004). Is levodopa toxic? Journal of Neurology, 251(S6). doi:10.1007/s00415-004-1610-xJuliano, R. L., Sunnarborg, S., DeSimone, J., & Haroon, Z. (2011). Institutional Profile: The Carolina Center of Cancer Nanotechnology Excellence: past accomplishments and future perspectives. Nanomedicine, 6(1), 19-24. doi:10.2217/nnm.10.142López, T., Esquivel, D., Mendoza-Díaz, G., Ortiz-Islas, E., González, R. D., & Novaro, O. (2015). L-DOPA stabilization on sol–gel silica to be used as neurological nanoreservoirs: Structural and spectroscopic studies. Materials Letters, 161, 160-163. doi:10.1016/j.matlet.2015.08.015Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Giret, S., Wong Chi Man, M., & Carcel, C. (2015). Mesoporous‐Silica‐Functionalized Nanoparticles for Drug Delivery. Chemistry – A European Journal, 21(40), 13850-13865. doi:10.1002/chem.201500578Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporöse Materialien für den Wirkstofftransport. Angewandte Chemie, 119(40), 7692-7703. doi:10.1002/ange.200604488Kim, K. T., Meeuwissen, S. A., Nolte, R. J. M., & van Hest, J. C. M. (2010). Smart nanocontainers and nanoreactors. Nanoscale, 2(6), 844. doi:10.1039/b9nr00409bBao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 15(1), 253-282. doi:10.1146/annurev-bioeng-071812-152409Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776Wu, S.-H., Hung, Y., & Mou, C.-Y. (2011). Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 47(36), 9972. doi:10.1039/c1cc11760bTang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246gTarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986Zhao, Y., Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opinion on Drug Delivery, 7(9), 1013-1029. doi:10.1517/17425247.2010.498816Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592tYang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022fPopat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224aGuardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331nSancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000uBernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880Zhang, Z., Balogh, D., Wang, F., Sung, S. Y., Nechushtai, R., & Willner, I. (2013). Biocatalytic Release of an Anticancer Drug from Nucleic-Acids-Capped Mesoporous SiO2 Using DNA or Molecular Biomarkers as Triggering Stimuli. ACS Nano, 7(10), 8455-8468. doi:10.1021/nn403772jEl Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083aBansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217wOzalp, V. C., Eyidogan, F., & Oktem, H. A. (2011). Aptamer-Gated Nanoparticles for Smart Drug Delivery. Pharmaceuticals, 4(8), 1137-1157. doi:10.3390/ph4081137De la Rica, R., Aili, D., & Stevens, M. M. (2012). Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 64(11), 967-978. doi:10.1016/j.addr.2012.01.002Leung, K. C.-F., Chak, C.-P., Lo, C.-M., Wong, W.-Y., Xuan, S., & Cheng, C. H. K. (2009). pH-Controllable Supramolecular Systems. Chemistry - An Asian Journal, 4(3), 364-381. doi:10.1002/asia.200800320Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578bColl, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306gGiménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501aXue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., & Zink, J. I. (2011). pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 133(23), 8798-8801. doi:10.1021/ja201252eWang, T., Wang, M., Ding, C., & Fu, J. (2014). Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid. Chem. Commun., 50(83), 12469-12472. doi:10.1039/c4cc05677aAngelos, S., Khashab, N. M., Yang, Y.-W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 131(36), 12912-12914. doi:10.1021/ja9010157Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055Gómez, L., Ramírez, H. L., Villalonga, M. L., Hernández, J., & Villalonga, R. (2006). Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme and Microbial Technology, 38(1-2), 22-27. doi:10.1016/j.enzmictec.2004.10.008Chico, B., Camacho, C., Pérez, M., Longo, M. A., Sanromán, M. A., Pingarrón, J. M., & Villalonga, R. (2009). Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. Journal of Electroanalytical Chemistry, 629(1-2), 126-132. doi:10.1016/j.jelechem.2009.02.004Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R., & Pingarrón, J. M. (2013). Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochemistry Communications, 30, 51-54. doi:10.1016/j.elecom.2013.02.008Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482Lin, S., Liu, C.-C., & Chou, T.-C. (2004). Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosensors and Bioelectronics, 20(1), 9-14. doi:10.1016/j.bios.2004.01.018Vizi, E., Fekete, A., Karoly, R., & Mike, A. (2010). Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology, 160(4), 785-809. doi:10.1111/j.1476-5381.2009.00624.xSchena, A., & Johnsson, K. (2013). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie International Edition, 53(5), 1302-1305. doi:10.1002/anie.201307754Schena, A., & Johnsson, K. (2014). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie, 126(5), 1326-1329. doi:10.1002/ange.201307754Zhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864Hassler, R., Haug, P., Nitsch, C., Kim, J. S., & Paik, K. (1982). Effect of Motor and Premotor Cortex Ablation on Concentrations of Amino Acids, Monoamines, and Acetylcholine and on the Ultrastructure in Rat Striatum. A Confirmation of Glutamate as the Specific Cortico-Striatal Transmitter. Journal of Neurochemistry, 38(4), 1087-1098. doi:10.1111/j.1471-4159.1982.tb05352.xSETHY, V. H., & WOERT, M. H. V. (1974). Regulation of striatal acetylcholine concentration by dopamine receptors. Nature, 251(5475), 529-530. doi:10.1038/251529a0Batool, Z., Sadir, S., Liaquat, L., Tabassum, S., Madiha, S., Rafiq, S., … Haider, S. (2016). Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Research Bulletin, 120, 63-74. doi:10.1016/j.brainresbull.2015.11.00
    corecore