219 research outputs found

    Efficacy and safety of deferasirox at low and high iron burdens: results from the EPIC magnetic resonance imaging substudy

    Get PDF
    The effect of deferasirox dosing tailored for iron burden and iron loading based on liver iron concentration (LIC) was assessed over 1 year in less versus more heavily iron-overloaded patients in a substudy of the Evaluation of Patients' Iron Chelation with ExjadeA (R). Deferasirox starting dose was 10-30 mg/kg/day, depending on blood transfusion frequency, with recommended dose adjustments every 3 months. Therapeutic goals were LIC maintenance or reduction in patients with baseline LIC < 7 or a parts per thousand yen7 mg Fe/g dry weight (dw), respectively. Changes in LIC (R2-magnetic resonance imaging) and serum ferritin after 1 year were assessed. Adverse events (AEs) and laboratory parameters were monitored throughout. Of 374 patients, 71 and 303 had baseline LIC < 7 and a parts per thousand yen7 mg Fe/g dw, respectively; mean deferasirox doses were 20.7 and 27.1 mg/kg/day (overall average time to dose increase, 24 weeks). At 1 year, mean LIC and median serum ferritin levels were maintained in the low-iron cohort (-0.02 A +/- 2.4 mg Fe/g dw, -57 ng/mL; P = not significant) and significantly decreased in the high-iron cohort (-6.1 A +/- 9.1 mg Fe/g dw, -830 ng/mL; P < 0.0001). Drug-related gastrointestinal AEs, mostly mild to moderate, were more frequently reported in the < 7 versus a parts per thousand yen7 mg Fe/g dw cohort (39.4 versus 20.8 %; P = 0.001) and were not confounded by diagnosis, dosing, ethnicity, or hepatitis B and/or C history. Reported serum creatinine increases did not increase in low- versus high-iron cohort patients. Deferasirox doses of 20 mg/kg/day maintained LIC < 7 mg Fe/g dw and doses of 30 mg/kg/day were required for net iron reduction in the high-iron cohort, with clinically manageable safety profiles. The higher incidence of gastrointestinal AEs at lower iron burdens requires further investigation

    Amustaline-glutathione pathogen-reduced red blood cell concentrates for transfusion-dependent thalassaemia

    Get PDF
    Transfusion-dependent thalassaemia (TDT) requires red blood cell concentrates (RBCC) to prevent complications of anaemia, but carries risk of infection. Pathogen reduction of RBCC offers potential to reduce infectious risk. We evaluated the efficacy and safety of pathogen-reduced (PR) Amustaline-Glutathione (A-GSH) RBCC for TDT. Patients were randomized to a blinded 2-period crossover treatment sequence for six transfusions over 8–10 months with Control and A-GSH-RBCC. The efficacy outcome utilized non-inferiority analysis with 90% power to detect a 15% difference in transfused haemoglobin (Hb), and the safety outcome was the incidence of antibodies to A-GSH-PR-RBCC. By intent to treat (80 patients), 12·5 ± 1·9 RBCC were transfused in each period. Storage durations of A-GSH and C-RBCC were similar (8·9 days). Mean A-GSH-RBCC transfused Hb (g/kg/day) was not inferior to Control (0·113 ± 0·04 vs. 0·111 ± 0·04, P = 0·373, paired t-test). The upper bound of the one-sided 95% confidence interval for the treatment difference from the mixed effects model was 0·005 g/kg/day, within a non-inferiority margin of 0·017 g/kg/day. A-GSH-RBCC mean pre-transfusion Hb levels declined by 6·0 g/l. No antibodies to A-GSH-RBCC were detected, and there were no differences in adverse events. A-GSH-RBCCs offer potential to reduce infectious risk in TDT with a tolerable safety profile

    Health related quality of life in Malaysian children with thalassaemia

    Get PDF
    BACKGROUND: Health Related Quality of Life (HRQoL) studies on children with chronic illness such as thalassaemia are limited. We conducted the first study to investigate if children with thalassaemia have a lower quality of life in the four dimensions as measured using the PedsQL 4.0 generic Scale Score: physical, emotional, social and role (school) functioning compared to the healthy controls allowing for age, gender, ethnicity and household income. METHODS: The PedsQL 4.0 was administered to children receiving blood transfusions and treatments at Hospital Kuala Lumpur, Malaysia using PedsQL 4.0 generic Scale Score. Accordingly, the questionnaire was also administered to a control group of healthy school children. Socio-demographic data were also collected from patients and controls using an interview schedule designed for the study. RESULTS: Of the 96 thalassaemia patients approached, 78 gave consent to be interviewed giving a response rate of 81.3%. Out of 235 healthy controls approached, all agreed to participate giving a response rate of 100%. The mean age for the patients and schoolchildren is 11.9 and 13.2 years respectively. The age range for the patients and the schoolchildren is between 5 to 18 years and 7 to 18 years respectively. After controlling for age and demographic background, the thalassaemia patients reported having significantly lower quality of life than the healthy controls. CONCLUSION: Thalassaemia has a negative impact on perceived physical, emotional, social and school functioning in thalassaemia patients which was also found to be worse than the children's healthy counterparts. Continuing support of free desferal from the Ministry of Health should be given to these patients. More understanding and support especially from health authorities, school authorities and the society is essential to enhance their quality of life

    Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.

    Get PDF
    BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin

    A Phase 3 Trial of Luspatercept in Patients with Transfusion-Dependent β-Thalassemia

    Get PDF
    BACKGROUND: Patients with transfusion-dependent β-thalassemia need regular red-cell transfusions. Luspatercept, a recombinant fusion protein that binds to select transforming growth factor β superfamily ligands, may enhance erythroid maturation and reduce the transfusion burden (the total number of red-cell units transfused) in such patients. METHODS: In this randomized, double-blind, phase 3 trial, we assigned, in a 2:1 ratio, adults with transfusion-dependent β-thalassemia to receive best supportive care plus luspatercept (at a dose of 1.00 to 1.25 mg per kilogram of body weight) or placebo for at least 48 weeks. The primary end point was the percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval. Other efficacy end points included reductions in the transfusion burden during any 12-week interval and results of iron studies. RESULTS: A total of 224 patients were assigned to the luspatercept group and 112 to the placebo group. Luspatercept or placebo was administered for a median of approximately 64 weeks in both groups. The percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval was significantly greater in the luspatercept group than in the placebo group (21.4% vs. 4.5%, P<0.001). During any 12-week interval, the percentage of patients who had a reduction in transfusion burden of at least 33% was greater in the luspatercept group than in the placebo group (70.5% vs. 29.5%), as was the percentage of those who had a reduction of at least 50% (40.2% vs. 6.3%). The least-squares mean difference between the groups in serum ferritin levels at week 48 was -348 μg per liter (95% confidence interval, -517 to -179) in favor of luspatercept. Adverse events of transient bone pain, arthralgia, dizziness, hypertension, and hyperuricemia were more common with luspatercept than placebo. CONCLUSIONS: The percentage of patients with transfusion-dependent β-thalassemia who had a reduction in transfusion burden was significantly greater in the luspatercept group than in the placebo group, and few adverse events led to the discontinuation of treatment. (Funded by Celgene and Acceleron Pharma; BELIEVE ClinicalTrials.gov number, NCT02604433; EudraCT number, 2015-003224-31.)

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio
    corecore