59 research outputs found
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration
Hyperdominance in the Amazonian tree flora
The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species--less diverse than the North American tree flora--accounts for half of the world's most diverse tree community.This work was
supported by Alberta Mennega Stichting; ALCOA Suriname;
Banco de la República; Center for Agricultural Research in
Suriname; Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (Plano Nacional de Pós-Graduação); Conselho
Nacional de Desenvovimento Científico e Tecnológico of Brazil
(CNPq) projects Programa de Pesquisas Ecológicas de Longa
Duração (PELD) (558069/2009-6), Programa de Apoio a
Núcleos de Excelência da Fundação de Amparo à Pesquisa
do Estado do Amazonas (PRONEX-FAPEAM) (1600/2006), Áreas
Úmidas, and MAUA; PELD (403792/2012-6), PPBio, CENBAM,
Universal (479599/2008-4), and Universal 307807-2009-6;
Fundação de Amparo À Pesquisa Do Estado Do Amazonas
(APEAM) projects DCR/2006, Hidroveg with FAPESP, and
PRONEX with CNPq; FAPESP; Colciencias; Duke University;
Ecopetrol; FEPIM 044/2003; the Field Museum; Conservation
International/DC (TEAM/INPA Manuas), Gordon and Betty
Moore Foundation; Guyana Forestry Commission; Investissement
d’Avenir grant of the French Agence Nationale de la Recherche
(ANR) (Centre d’Étude de la Biodiversité Amazonienne
ANR-10-LABX-0025); Margaret Mee Amazon Trust; Miquel
fonds; National Geographic Society (7754-04, 8047-06 to
P.M.J.); Netherlands Foundation for the Advancement of
Tropical Research WOTRO grants WB85- 335 and W84-581;
Primate Conservation Incorporated; Programme Ecosystèmes
Tropicaux (French Ministry of Ecology and Sustainable
Development; Shell Prospecting and Development Peru;
Smithsonian Institution’s Biological Diversity of the Guiana
Shield Program; Stichting het van Eeden-fonds; the Body
Shop; the Ministry of the Environment of Ecuador;
TROBIT; Tropenbos International; NSF (NSF-0743457 and
NSF-0101775 to P.M.J.); USAID; Variety Woods Guyana;
WWF-Brazil; WWF-Guianas; XIIéme Contrat de Plan Etat
Région-Guyane (French Government and European Union); and
grants to RAINFOR from the European Union, UK Natural
Environment Research Council, the Gordon and Betty Moore
Foundation, and U.S. National Geographic Society. O.L.P. is
supported by a European Research Council Advanced Grant and a
Royal Society Wolfson Research Merit Award
Biased-corrected richness estimates for the Amazonian tree flora
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come
Effectiveness of carbamide peroxide and sodium perborate in non-vital discolored teeth
Weathering of Rhyolites and Soil Formation in an Atlantic Forest Fragment in Northeastern Brazil
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The percentages of dispersal modes per plot are included as Supporting Information (Table S7, based on 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests in Amazonia). The dispersal modes assigned to these 5433 species and morphospecies are also included as Supporting Information (Table S8).Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types.Colombian institution Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIASFaculty of Sciences, Universidad de los Ande
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
- …
