12 research outputs found

    Enhancement and modulation of cosmic noise absorption in the afternoon sector at subauroral location ( L  = 5) during the recovery phase of 17 March 2015 geomagnetic storm

    Get PDF
    The present study has focused on the intense production of cosmic noise absorption (CNA) at Maitri, Antarctica (L = 5; CGM −62°S, 55°E) during the early recovery phase of the largest storm of the current solar cycle commenced on 17 March 2015 St. Patrick's Day. The enhancement of CNA during 15–18 UT (14–17 magnetic local time (MLT); MLT = UT − 1 at Maitri) was as large as the CNA enhancement occurred during the main phase of the storm. During this time the CNA pattern also exhibits oscillation in the Pc5 (2–7 mHz) range and is in simultaneity with geomagnetic pulsations in the same frequency range. We observed the amplitude of CNA pulsation is well correlated with the level of CNA production. High-amplitude Pc5 oscillations were observed in the vicinity of auroral oval near Maitri. Absence of electromagnetic ion cyclotron (EMIC) waves is marked suggesting the possible role of VLF waves in precipitation. The reason for the intense CNA production is found to be the precipitation caused mainly by hiss-driven subrelativistic electrons. The CNA enhancement event is located well inside the dusk plasmaspheric bulge region as suggested by Tsurutani et al. (2015). Signature of enhanced eastward electrojet at Maitri during 14–17 MLT could be an additional factor for such large CNA. In order to establish the cause and effect relationship between the geomagnetic and CNA oscillations at Maitri, transfer entropy method has been used, which confirmed the modulation of CNA by geomagnetic pulsations

    Magnetic Conjugacy of Pc1 Waves and Isolated Proton Precipitation at Subauroral Latitudes: Importance of Ionosphere as Intensity Modulation Region

    Get PDF
    Pc1 geomagnetic pulsations, equivalent to electromagnetic ion cyclotron waves in the magnetosphere, display a specific amplitude modulation, though the region of the modulation remains an open issue. To classify whether the amplitude modulation has a magnetospheric or ionospheric origin, an isolated proton aurora (IPA), which is a proxy of Pc1 wave-particle interactions, is compared with the associated Pc1 waves for a geomagnetic conjugate pair, Halley Research Base in Antarctica and Nain in Canada. The temporal variation of an IPA shows a higher correlation coefficient (0.88) with Pc1 waves in the same hemisphere than that in the opposite hemisphere. This conjugate observation reveals that the classic cyclotron resonance is insufficient to determine the amplitude modulation. We suggest that direct wave radiation from the ionospheric current by IPA should also contribute to the amplitude modulation

    Solar Cycle-Modulated Deformation of the Earth–Ionosphere Cavity

    Get PDF
    The Earth–ionosphere cavity resonator is occupied primarily by the electromagnetic radiation of lightning below 100 Hz. The phenomenon is known as Schumann resonances (SR). SR intensity is an excellent indicator of lightning activity and its distribution on global scales. However, long-term measurements from high latitude SR stations revealed a pronounced in-phase solar cycle modulation of SR intensity seemingly contradicting optical observations of lightning from satellite, which do not show any significant solar cycle variation in the intensity and spatial distribution of lightning activity on the global scale. The solar cycle-modulated local deformation of the Earth–ionosphere cavity by the ionization of energetic electron precipitation (EEP) has been suggested as a possible phenomenon that may account for the observed long-term modulation of SR intensity. Precipitating electrons in the energy range of 1–300 keV can affect the Earth–ionosphere cavity resonator in the altitude range of about 70–110 km and modify the SR intensities. However, until now there was no direct evidence documented in the literature supporting this suggestion. In this paper we present long-term SR intensity records from eight stations, each equipped with a pair of induction coil magnetometers: five high latitude (|lat| \u3e 60°), two mid-high latitude (50° \u3c |lat| \u3c 60°) and one low latitude (|lat| \u3c 30°). These long-term, ground-based SR intensity records are compared on the annual and interannual timescales with the fluxes of precipitating 30–300 keV medium energy electrons provided by the POES NOAA-15 satellite and on the daily timescale with electron precipitation events identified using a SuperDARN radar in Antarctica. The long-term variation of the Earth–ionosphere waveguide’s effective height, as inferred from its cutoff frequency, is independently analyzed based on spectra recorded by the DEMETER satellite. It is shown that to account for all our observations one needs to consider both the effect of solar X-rays and EEP which modify the quality factor of the cavity and deform it dominantly over low- and high latitudes, respectively. Our results suggest that SR measurements should be considered as an alternative tool for collecting information about and thus monitoring changes in the ionization state of the lower ionosphere associated with EEP

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Design and Characterization of Materials and Processes for Area Selective Atomic Layer Deposition

    Get PDF
    Area selective atomic layer deposition (ASALD) is demonstrated to be a promising route to perform direct patterned deposition. In particular, methods to modify (or mask) the surface and process parameters to perform selective deposition of titanium dioxide have been developed and investigated in detail. Results indicated that self assembled monolayer based masking methodology posses significant limitations due to challenges associated with obtaining defect free monolayer and absence of traditional patterning techniques. On the other hand, polymer films based masking methodology offer a better alternative to perform ASALD. A number of factors that must be considered in designing a successful ASALD process based on polymer films were identified. These include: reactivity of polymer with ALD precursor, diffusion of ALD precursors through polymer mask and remnant precursor content in the polymer film during ALD cycling. Investigations suggested that ALD nucleation can be successfully blocked on polymer films that do not contain direct OH sites in their backbone. It was observed that sorption of water in the polymer film does not pose a serious limitation however; metal precursor diffusion through the polymer mask was identified as a critical parameter in determining the minimum required masking layer thickness for a successful ASALD process. In addition, a novel ASALD-based top surface imaging (TSI) technique has been developed. The ASALD-TSI process has demonstrated sharp contrast (etch barrier deposition vs exposure dose) and therefore offers the potential to overcome many of the challenges experienced with conventional TSI schemes.Ph.D.Committee Chair: Henderson, Clifford L.; Committee Chair: Hess, Dennis W.; Committee Member: Gallivan, Martha A.; Committee Member: Summers, Christopher J.; Committee Member: Tolbert, Laren M

    Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022)

    No full text
    It is a great privilege for us to present the abstract book of ICAMCS-2022 to the authors and the delegates of the event. We hope that you will find it useful, valuable, aspiring, and inspiring. This book is a record of abstracts of the keynote talks, invited talks, and papers presented by the participants, which indicates the progress and state of development in research at the time of writing the research article. It is an invaluable asset to all researchers. The book provides a permanent record of this asset. Conference Title: 2nd International Conference on Applied Mathematics and Computational SciencesConference Acronym: ICAMCS-2022Conference Date: 12-14 October 2022Conference Organizers: DIT University, Dehradun, IndiaConference Mode: Online (Virtual

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017

    No full text
    corecore