575 research outputs found
Modeling and Reduction of High Frequency Scatter Noise at LIGO Livingston
The sensitivity of aLIGO detectors is adversely affected by the presence of
noise caused by light scattering. Low frequency seismic disturbances can create
higher frequency scattering noise adversely impacting the frequency band in
which we detect gravitational waves. In this paper, we analyze instances of a
type of scattered light noise we call "Fast Scatter" that is produced by motion
at frequencies greater than 1 Hz, to locate surfaces in the detector that may
be responsible for the noise. We model the phase noise to better understand the
relationship between increases in seismic noise near the site and the resulting
Fast Scatter observed. We find that mechanical damping of the Arm Cavity
Baffles (ACBs) led to a significant reduction of this noise in recent data. For
a similar degree of seismic motion in the 1-3 Hz range, the rate of noise
transients is reduced by a factor of ~ 50.Comment: 23 pages, 19 figure
Ground motion prediction at gravitational wave observatories using archival seismic data
Gravitational wave observatories have always been affected by tele-seismic
earthquakes leading to a decrease in duty cycle and coincident observation
time. In this analysis, we leverage the power of machine learning algorithms
and archival seismic data to predict the ground motion and the state of the
gravitational wave interferometer during the event of an earthquake. We
demonstrate improvement from a factor of 5 to a factor of 2.5 in scatter of the
error in the predicted ground velocity over a previous model fitting based
approach. The level of accuracy achieved with this scheme makes it possible to
switch control configuration during periods of excessive ground motion thus
preventing the interferometer from losing lock. To further assess the accuracy
and utility of our approach, we use IRIS seismic network data and obtain
similar levels of agreement between the estimates and the measured amplitudes.
The performance indicates that such an archival or prediction scheme can be
extended beyond the realm of gravitational wave detector sites for hazard-based
early warning alerts.Comment: 10 pages, 7 figures; matches published versio
Observation of Parametric Instability in Advanced LIGO
Parametric instabilities have long been studied as a potentially limiting
effect in high-power interferometric gravitational wave detectors. Until now,
however, these instabilities have never been observed in a kilometer-scale
interferometer. In this work we describe the first observation of parametric
instability in an Advanced LIGO detector, and the means by which it has been
removed as a barrier to progress
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
A gravitational-wave standard siren measurement of the Hubble constant
On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …