15 research outputs found

    Atomic scale investigation of Cr precipitation in copper

    Full text link
    The early stage of the chromium precipitation in copper was analyzed at the atomic scale by Atom Probe Tomography (APT). Quantitative data about the precipitate size, 3D shape, density, composition and volume fraction were obtained in a Cu-1Cr-0.1Zr (wt.%) commercial alloy aged at 713K. Surprisingly, nanoscaled precipitates exhibit various shapes (spherical, plates and ellipsoid) and contain a large amount of Cu (up to 50%), in contradiction with the equilibrium Cu-Cr phase diagram. APT data also show that some impurities (Fe) may segregate along Cu/Cr interfaces. The concomitant evolution of the precipitate shape and composition as a function of the aging time is discussed. A special emphasis is given on the competition between interfacial and elastic energy and on the role of Fe segregation

    Influential factors on the levels of cation exchange capacity in sediment at Langat river.

    Get PDF
    An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (−16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p < 0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment

    A comparison of Eulerian and Lagrangian transport and non-linear reaction algorithms

    Get PDF
    When laboratory-measured chemical reaction rates are used in simulations at the field-scale, the models typically overpredict the apparent reaction rates. The discrepancy is primarily due to poorer mixing of chemically distinct waters at the larger scale. As a result, realistic field-scale predictions require accurate simulation of the degree of mixing between fluids. The Lagrangian particle-tracking (PT) method is a now-standard way to simulate the transport of conservative or sorbing solutes. The method’s main advantage is the absence of numerical dispersion (and its artificial mixing) when simulating advection. New algorithms allow particles of different species to interact in nonlinear (e.g., bimolecular) reactions. Therefore, the PT methods hold a promise of more accurate field-scale simulation of reactive transport because they eliminate the masking effects of spurious mixing due to advection errors inherent in grid-based methods. A hypothetical field-scale reaction scenario is constructed and run in PT and Eulerian (finite-volume/finite-difference) simulators. Grid-based advection schemes considered here include 1st- to 3rd-order spatially accurate total-variation-diminishing flux-limiting schemes, both of which are widely used in current transport/reaction codes. A homogeneous velocity field in which the Courant number is everywhere unity, so that the chosen Eulerian methods incur no error when simulating advection, shows that both the Eulerian and PT methods can achieve convergence in the L1 (integrated concentration) norm, but neither shows stricter pointwise convergence. In this specific case with a constant dispersion coefficient and bimolecular reaction A+B¿P, the correct total amount of product is 0.221MA0, where MA0 is the original mass of reactant A. When the Courant number drops, the grid-based simulations can show remarkable errors due to spurious over- and under-mixing. In a heterogeneous velocity field (keeping the same constant and isotropic dispersion), the PT simulations show an increased reaction total from 0.221MA0 to 0.372MA0 due to fluid deformation, while the 1st-order Eulerian simulations using ˜ 106 cells (with a classical grid Peclet number ¿x/aL of 10) have total product of 0.53MA0, or approximately twice as much additional reaction due to advection error. The 3rd-order TVD algorithm fares better, with total product of 0.394MA0, or about 1.14 times the increased reaction total. A very strict requirement on grid Peclet numbers for Eulerian simulations will be required for realistic reactions because of their nonlinear nature. We analytically estimate the magnitude of the effect for the end-member cases of very fast and very slow reactions and show that in either case, the mass produced is proportional to View the MathML source where Pe is the Peclet number. Therefore, extra mass is produced according to View the MathML source where the dispersion includes any numerical dispersion error. We test two PT methods, one that kills particles upon reaction and another that decrements a particle’s mass. For the bimolecular reaction studied here, the computational demands of the particle-killing methods are much smaller than, and the particle-number-preserving algorithm are on par with, the fastest Eulerian methods.Peer ReviewedPostprint (author's final draft

    Assessment of seawater mixing in a coastal aquifer by high resolution electrical resistivity tomography

    No full text
    Seawater intrusion is a major problem in urbanized coastal regions of India which is due to over exploitation of groundwater for various purposes. This study was carried out with the objective of assessing the zone of mixing between seawater and groundwater in the coastal aquifer in south of Chennai, Tamil Nadu, India using high resolution electrical resistivity tomography. High resolution electrical resistivity tomography was carried out in five profiles perpendicular to the sea using IRIS make SYSCAL Pro-96 system with 2.5 m or 5 m inter-electrode separation. The maximum length of the profile was 170 m which resulted in a depth of investigation of 28.7 m. The apparent resistivity measured in this area varies from 0.3 ohm-m to 30,000 ohm-m. The apparent resistivity of saturated zone decreases towards the sea, indicating the influence of seawater. This was also confirmed by measuring the electrical conductivity of groundwater, which gradually increases from 156 μS/cm to 3430 μS/cm towards the sea. Further, the concentration profiles of electrical conductivity, sodium, chloride and chloride / bicarbonate ratio are compared with the high resolution electrical resistivity tomography profile. The distance of influence of seawater is comparatively high in northern part than in southern part of the area. The high resolution electrical resistivity tomography was effectively used to determine the effect of seawater mixing with groundwater
    corecore