35 research outputs found

    SMART EQUIPMENT DESIGN CHALLENGES FOR REAL TIME FEEDBACK SUPPORT IN SPORT

    Get PDF
    Smart equipment can support feedback in motor learning process. Smart equipment with integrated sensors can be used as a standalone system or complemented with body-attached wearable sensors. Our work focuses on real-time biofeedback system design, particularly on the application of a specific sensor selection. The main goal of our research is to prepare the technical conditions to prove efficiency and benefits of the real-time biofeedback when used in selected motion-learning processes. The most used wireless technologies that are used or are expected to be used in real-time biofeedback systems are listed. The tests performed on two prototypes, smart golf club and smart ski, show an appropriate sensor selection and feasibility of implementation of the real-time biofeedback concept in golf and skiing practice. We are confident that the concept can be expanded for use in other sports and rehabilitation. It has been learned that at this time none of the existing wireless technologies can satisfy all possible demands of different real-time biofeedback applications in sport

    COMPUTERIZED RADIAL ARTERY PULSE SIGNAL CLASSIFICATION FOR LUNG CANCER DETECTION

    Get PDF
    Pulse diagnosis, the main diagnosis method in traditional Chinese medicine, is a non-invasive and convenient way to check the health status. Doctors usually use three fingers to feel three positions; Cun, Guan, and Chi of the wrist pulse, to diagnose the body’s healthy status. However, it takes many years to master the pulse diagnosis. This paper aims at finding the best position for acquiring wrist-pulse-signal for lung cancer diagnosis. In our paper, the wrist-pulse-signals of Cun, Guan, and Chi are acquired by three optic fiber pressure sensors of the same type. Twelve features are extracted from the signals of these three positions, respectively. Eight classifiers are applied to detect the effectiveness of the signal acquired from each position by classifying the pulse signals of healthy individuals and lung cancer patients. The results achieved by the proposed features show that the signal acquired at Cun is more effective for lung cancer diagnosis than the signals acquired at Guan and Chi

    Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview

    Get PDF
    In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes’ performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes’ performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    The Role of High Performance Computing and Communication for Real-Time Biofeedback in Sport

    No full text
    This paper studies the main technological challenges of real-time biofeedback in sport. We identified communication and processing as two main possible obstacles for high performance real-time biofeedback systems. We give special attention to the role of high performance computing with some details on possible usage of DataFlow computing paradigm. Motion tracking systems, in connection with the biomechanical biofeedback, help in accelerating motor learning. Requirements about various parameters important in real-time biofeedback applications are discussed. Inertial sensor tracking system accuracy is tested in comparison with a high performance optical tracking system. Special focus is given on feedback loop delays. Real-time sensor signal acquisitions and real-time processing challenges, in connection with biomechanical biofeedback, are presented. Despite the fact that local processing requires less energy consumption than remote processing, many other limitations, most often the insufficient local processing power, can lead to distributed system as the only possible option. A multiuser signal processing in football match is recognised as an example for high performance application that needs high-speed communication and high performance remote computing. DataFlow computing is found as a good choice for real-time biofeedback systems with large data streams

    Biomechanical biofeedback systems and applications

    No full text
    corecore