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CORRECTNESS OF THE CHORD PROTOCOL

BOJAN MARINKOVIĆ, ZORAN OGNJANOVIĆ, PAOLA GLAVAN, ANTON KOS,
AND ANTON UMEK

Abstract. Internet of Things (IoT) can be seen as a cooperation of the var-
ious heterogeneous devices with limited performances, that participate in the

same system. By they nature, these devices can be very distributed. The core
of every IoT system is its discovery and control service. The Chord protocol

is one of the first, simplest and most popular distributed protocol and can be

use as a backbone of the discovery and control services of an IoT system. In
this paper we prove the correctness of the Chord protocol using the logic of

time and knowledge. We consider Chord actions that maintain ring topology

with the additional assumption the nodes are not allowed to fail or leave.
Keywords: IoT, DHT, Chord, correctness, temporal logic, epistemic logic

1. Introduction

Internet of Things (IoT) paradigm can be defined as [1]: ”The pervasive pres-
ence around us of a variety of things or objects which, through unique addressing
schemes, are able to interact with each other and cooperate with their neighbors
to reach common goals.” In this framework the smart objects, which are connected
by an Internet-like structure, are able to communicate and exchange information
and to enable new forms of interaction among things and people [5]. The core of
every IoT system consists of its discovery and control service. Usually, the objects
which participate in an IoT system have limited computing power, memory and
power supply. It is the common thing that various heterogeneous devices partici-
pate in the same IoT system. Ordinarily, these devices are highly distributed, so
they participate in a distributed, i.e. Peer-to-Peer (P2P), system.

In a homogeneous decentralized P2P system [16], many nodes (peers) execute
the same application, and have equal rights during that execution. They might join
or leave system at any time. In such a framework processes are dynamically dis-
tributed to peers, with no centralized control. Thus, P2P systems have no inherent
bottlenecks and can potentially scale very well. Also, those systems are resilient
to failures, attacks, etc., since there are no nodes which perform the critical func-
tions of the systems. The main applications of P2P-systems involve: file sharing,
redundant storage, real-time media streaming, etc.

P2P systems are frequently implemented in a form of overlay networks [20], a
structure that is totally independent of the underlying network that is actually
connecting devices. Overlay networks represent a logical look on organization of
the system resources. Some of the overlay networks are realized in the form of
a Distributed Hash Tables (DHTs), which provides a lookup service similar to a
hash table; 〈key, value〉 pairs are stored in a DHT, and any participating node
can efficiently retrieve the value associated with a given key. Note that key is
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not used as a cryptographic notion, but (following the common practice in DHT-
related papers) to represent identifiers of objects. Responsibility for maintaining
the mapping from keys to values is distributed among the peers, in such a way that
any change in the set of participants causes a minimal amount of disruption. The
Chord protocol [17, 18, 19] is one of the first, simplest and most popular DHTs.
The paper [17] which introduces Chord was recently awarded the SIGCOMM 2011
Test-of-Time Award.

Because of the simplicity and popularity of the Chord protocol, it was used for
the realization of the discovery and/or control service of IoT systems described in
[4, 5, 6, 15, 22].

As we mentioned above, the discovery and control services are cores of an IoT
system, and because of that, in this paper we will prove the correctness of the
Chord protocol using the logic of time and knowledge. We consider the case when
the nodes are not allowed to fail or leave and concern Chord actions that maintain
ring topology.

We are aware of only a few attempts to formally verify behavior of DHTs and
particularly Chord [2, 3, 9, 10, 23]. We consider them below and compare with our
approach.

The rest of the paper is organized in the following way: in Section 2 we consider
other approaches for proving the correctness of the Chord protocol and clearly
present the contributions of this paper; Section 3 presents a short description of
the Chord protocol; in Section 4 we present a logical framework which will be
used to prove the correctness of the maintenance of the ring topology of the Chord
protocol with the respect of the fact that nodes are not allowed to departure the
system after they join it; the proof is given in Section 5; we conclude with Section
6. In A we provide detailed proofs of most lemmas and theorems from the paper.

2. Related Work and Contributions

2.1. Related Work. The Chord protocol is introduced in [17, 18, 19]. The papers
analyze the protocol, its performance and robustness under the assumption that
the nodes and keys are randomly chosen, and give several theorems that involve the
phrase with high probability, for example: ”With high probability, the number of
nodes that must be contacted to find a successor in a N -node network is O(logN)”.

The only statement in the papers [17, 18, 19] which avoids the mentioned phrase
about high probability is Theorem IV.3. It corresponds to our Lemma 5 and proves
that inconsistent states produced by executing several concurrent joins of the new
nodes are transient, i.e., that after the last node joins the network will form a
cycle. More general sequences of concurrent joining and leaving are considered in
[10], where a lower bound of the rate at which nodes need to maintain the system
such that it works correctly is given with high probability. In this paper we are not
considering possible failures and leaves of the nodes. Our intention is that include
this segment in our future work.

Anyway, it is not quite clear how to compare these two approaches (deterministic
and probabilistic), but in our opinion there is benefit from both of them. One can
argue that the probabilistic approach, i.e. providing lower bounds of probabilities,
is useful to study robustness of protocols. On the other hand, it will be useful to
describe sequences of actions leading to (un)stable states of Chord networks, to
be able to analyze properties of systems that incorporate Chord and assume its
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correctness, as it is the case with the discovery and/or control service of an IoT
system.

In [9] the theory of stochastic processes is used to estimate the probability that
a Chord network is in a particular state. In [2, 3] Chord’s stabilization algorithm
is modelled using the π-calculus and it’s correctness is established by proving the
equivalence of the corresponding specification and implementation. Possible de-
partures of nodes from a network are not examined in this approach. In [23] the
Alloy formal language is used to prove correctness of the pure join model. The
same formalization present several counterexamples to correctness of Chord ring-
maintenance in the general case.

In [7] a joint frame for reasoning about knowledge and linear time is presented,
and the proof of weak completeness for a logic which combines expressions about
knowledge with linear time is provided.

As we mentioned in Introduction using DHT or Chord in IoT domain is not a
novelty [4, 5, 6, 15, 22]. In [4] authors proposed distributed control plane. They
consider the problem how to deliver control messages to the devices that are in
sleeping mode most of the time. Proposed DHT algorithm is Chord. The paper [5]
introduce scalable, self-configuring and automated service and resource discovery
mechanism based on structured DHT architecture. The article [6] presents com-
parison of the discovery service mechanisms in IoT domain, both traditional and
distributed approaches. In [15] authors give the description of a novel discovery
service for IoT which adopts DHT approach with multidimensional search domain.
Authors of [22] presented discovery service for objects carrying RFID tags based
on double Chord ring. In all these articles, the correctness of the Chord protocol
was accepted for granted.

2.2. Contributions. In this paper we:

• provide axiomatization and prove the soundness, strong completeness and
decidability of the logic of time and knowledge;
• describe the Chord protocol using the logic of time and knowledge;
• prove the correctness of the maintenance of the ring topology of the Chord

protocol with the respect of the fact that nodes are not allowed to departure
the system after they join it.

This work is motivated by the importance of the discovery and control service of
an IoT system and the obvious fact that errors in concurrent systems are difficult
to reproduce and find merely by program testing. This proof could be, also, the
foundation for the formal proof created using a formal proof assistant (like, Coq or
Isabelle/HOL).

3. Chord Protocol

The papers [17, 18, 19] introduce the Chord protocol and give the specification
of it in C++-like pseudo-code. They present the correctness, performance and
robustness of the Chord protocol. Here, we will provide a short description of it.

A number of nodes running the Chord protocol form a ring-shaped network. The
main operation supported by Chord is mapping the given key onto a node using
consistent hashing.The consistent hashing [8] provides load-balancing, i.e., every
node receives roughly the same number of keys, and only a few keys are required
to be moved when nodes join and leave the network. Chord networks are overlay
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systems. Thus, each node in a network, that consists of N -nodes, needs “routing”
information about only a few other nodes, O(logN), and resolves all lookups via
O(logN) messages to other nodes.

Figure 1. Chord lookup procedure

As it is shown, the Chord’s stabilization algorithm maintains good lookup per-
formance despite continuous failure and joining of nodes. When the network is not
stable, i.e., the corresponding “routing” information is out of date since nodes join
and leave arbitrarily, the performance degrades.

Identifiers are assigned to nodes and keys by the consistent hash function. The
identifier for a node or a key, hash(node) or hash(key), is produced by hashing IP
of the node, or the value of the key. The length of identifiers, for example m bits),
must guarantee that the probability that two objects of the same type are assigned
same identifiers is negligible. Identifiers are ordered in an identifier circle modulo
2m. Then, the key k is assigned to the node such that hash(node) = hash(key). If
such a node does not exist, the key is assigned to the first node in the circle whose
identifier is greater than hash(key).

Every node possesses information on its current successor and predecessor nodes
in the identifier circle. To accelerate the lookup procedure, a node also maintains
routing information in the form of the so-called Finger Table with up to m entries.
The ith entry in the table at the node n contains the identifier of the first node s
that succeeds n by at least 2i−1 in the identifier circle, i.e., s = successor(n+2i−1),
where 1 6 i 6 m, and all arithmetic is preformed modulo 2m. Figure 1 presents
Finger tables of nodes n7 and n50.

One node can be aware of only a few other nodes in the system, like node n7

from Figure 1 knows for the existence of only 3 other nodes. Some other can have
different node identifier in almost every entry in its Finger table, like node n50 from
Figure 1.

During the lookup procedure, a node forwards a query to the largest element of
the Finger table which is smaller than the key used in the query, respect to the
used arithmetics. In the example illustrated with Figure 1, if n2 is looking for the
responsible node for the key with identifier 57, it will forward this query to node
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n37, the closes node from its finger table. After, that this query will be forwarded
to n45 and n56, until it finally ends at n60. The answer if n60 contains the key and
respected value with identifier 57 will be returned to node that started query, in
this case n2.

The stabilization procedure implemented by Chord must guarantee that each
node’s finger table, predecessor and successor pointers are up to date. The pro-
cedure runs periodically in the background at each node. To increase robustness,
each Chord node can create a successor list of size r, containing the node’s first r
successors.

Figure 2. Stabilization during the joining of a new node

Figure 2 illustrates the process of joining of the node n5 between nodes n2 and
n7. As a first step n5 will set its successor to n7. During the stabilization process
n7 will set its predecessor to n5, then n2 will set its successor to n5 and, finally, n5

will set its predecessor to n2.
Beside the mapping of keys onto the set of nodes, the only other operations

realized by Chord are adding a node to network or removing a node from a network.
When a node n joins an existing network, certain keys previously assigned to n’s
successor now become assigned to n. When a node n leaves the network regularly,
it notifies its predecessor and successor and reassigns all of its keys to the successor.

4. Logic of Time and Knowledge

As we mentioned in the previous Section, a system which runs the Chord protocol
is a dynamic multi-agent system, where every agent has it own partial view of the
surrounding environment. To be able to reason about such system, we need to
introduce a framework for formal description of changes of the knowledge of an
agent during the time. In this section we present logic of time and knowledge.

4.1. Syntax.
Let N be the set of non-negative integers. We denote N = {n0, . . . nm−1}, where

m ∈ N, and then let N1 = N ∪ {u} be the set of propositional variables.
The set For of all formulas is the smallest superset of N1 which is closed under

the following formation rules:

• 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {�,≺} and φ, ψ ∈ N1,
• 〈φ, ψ, ϕ〉 7→ φM〈ψ,ϕ〉 where φ, ψ, ϕ ∈ N,
• ψ 7→ ∗ψ where ∗ ∈ {¬,©, , Ki},
• 〈φ, ψ〉 7→ φ ∗ ψ where ∗ ∈ {∧, U, S}.

The operators � and ≺ represent relations successor and predecessor of a node.
The tip of the ”arrow” is pointing to the node with ”greater” identifier, with re-
spect to the ordering determined by the ring shaped Chord network. We will use
abbreviation ni �2 nk for ni, nk ∈ N iff there is an nj ∈ N such that ni � nj and
nj � nk, and nk ≺2 ni for ni, nk ∈ N iff there is an nj ∈ N such that nk ≺ nj and
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nj ≺ ni. Similarly, we can define nj �i nk, as well as nj ≺i nk for nj , nk ∈ N and
0 < i < m. Figure 3 illustrates the relations �, ≺ (Figure 3a) and �i (Figure 3b).

(a) n56 � n60 and n60 ≺ n56 (b) n50 �3 n60

Figure 3. Examples of �, ≺ and �i

The operators ¬ and ∧ represent standard logical negation and conjunction. The
operators ©,  , U and S are standard temporal operators Next, Previous, Until
and Since. The operator Ki represents the knowledge of the agent i.

The remaining logical and temporal connectivities ∨,→,↔, F, G, P, H are defined
in the usual way:

• φ ∨ ψ =def ¬(¬φ ∧ ¬ψ),
• φ→ ψ =def ¬φ ∨ ψ,
• φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ),
• Fψ =def (ψ → ψ)Uψ,
• Gψ =def ¬F¬ψ,
• Pψ =def (ψ → ψ)Sψ,
• Hψ =def ¬P¬ψ,
• ©0ψ =def ψ;©n+1ψ =©©n ψ, n > 0,
•  0ψ =def ψ; n+1ψ =   nψ, n > 0.

Nonempty sets of formulas will be called theories.
In this paper we will consider time flow which is isomorphic to the set N. We will

take into account both future and past. Since we are dealing with a multi-agent
system were agents have to share knowledge among them the obvious choice is to
use the logic of time and knowledge, similarly like in [7].

We define Φk(τ, (θj)j∈N) as a k-nested implication for the knowledge of an agent
i and for formula τ based on the sequence of formulas (θj)j∈N in the following
recursive way:

Φ0(τ, (θj)j∈N) = θ0 → τ,

Φk+1(τ, (θj)j∈N) = θk+1 → KiΦk(τ, (θj)j∈N), for some 0 6 i < m.

For example, Φ3(τ, (θj)j∈N) = θ3 → Ki(θ2 → Kj(θ1 → Ki(θ0 → τ))), 0 6 i, j < m.
This definition follows the form of probabilistic k-nested implication presented in
[12, 21].

4.2. Semantics.
We will defined models as Kripke’s structures.

Definition 1. A model M is any tuple 〈R,W, π,K〉 such that

• Set of all possible runs R:
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– rj = {〈xj,t0 , . . . , xj,tm−1〉|t = 0, 1, 2 . . .}, xj,ti ∈ {>,⊥},
– R = {rj ; j = 0, 1, . . .},
– Restriction: if xj,ti = > then xj,t+1

i = >
• W set of time instances (the time flow isomorphic to N),
• π : R×W ×N1 → {>,⊥} truth assignment, such that:

– π(rj , t, nl) = xj,tl ,
– π(rj , t, u) = >

• K possibility relations: Ki ⊂ (R×W )2: 〈rj , t〉Ki〈rj
′
, t′〉 iff xj,ti = xj

′,t′

i .

Figure 4. Kripke model

Figure 4 illustrates a Kripke model which contains the runs r1, r2, r3, r4, where
r1 is the sequence of 〈r1, 0〉, 〈r1, 1〉, 〈r1, 2〉, etc. and similarly for other runs. In
this model, for example 〈r2, 1〉K1〈r2, 2〉, etc.

An ni ∈ N is true in the time instant t in the run rj (xj,ti = >) if the Chord net-
work node i is active in the corresponding realization of the network. We define the
set of propositional variables which represent the active nodes of Chord network as
Na = {ni|ni is true}. For ni, nj , nk ∈ N we define the relation M which represents
the fact that ni is the member of the ring interval (nj , nk] as: niM〈nj , nk〉 is true iff

• j = k,
• j < k and j < i 6 k,
• k < j and ¬(k < i 6 j).

4.3. Satisfiability relation. A formula is satisfiable if it is possible to find an
interpretation, i.e. model, that makes that formula true.

Definition 2. Let M = 〈R,W, π,K〉 be any model. The satisfiability relation |=
(formula α is satisfied in a time instance of a run R×W |= α) is defined recursively
as follows:

(1) 〈rj , t〉 |= n iff π(rj , t, n) = true, n ∈ N1

(2) 〈rj , t〉 |= α ∧ β iff 〈rj , t〉 |= α and 〈rj , t〉 |= β
(3) 〈rj , t〉 |= ¬α iff not 〈rj , t〉 |= α ( 〈rj , t〉 6|= α)
(4) 〈rj , t〉 |=©α iff 〈rj , t+ 1〉 |= α
(5) 〈rj , t+ 1〉 |=  α iff 〈rj , t〉 |= α
(6) 〈rj , 0〉 |=  α
(7) 〈rj , t〉 |= αUβ iff there is a i > 0 such that 〈rj , t+ i〉 |= β, and for every k,

such that 0 6 k < i, 〈rj , t+ k〉 |= α
(8) 〈rj , t〉 |= αSβ iff there is a 0 6 i 6 t such that 〈rj , t− i〉 |= β, and for every

k, such that 0 6 k < i, 〈rj , t− k〉 |= α
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(9) 〈rj , t〉 |= Kiα iff 〈rj′ , t′〉 |= α for all 〈rj′ , t′〉 ∈ Ki(〈rj , t〉)
(10) 〈rj , t〉 |= ni � nj iff

(a) i = j and 〈rj , t〉 |= ni ∧ Ki(
∧
nj∈N\{ni} ¬nj)

(b) i < j 6 m and 〈rj , t〉 |= ni ∧ nj ∧ Ki(
∧j−1
k=i+1 ¬nk) ∧ Kinj

(c) j < i < m and 〈rj , t〉 |= ni∧nj∧Ki(
∧m
k=i+1 ¬nk)∧Ki(

∧j−1
k=1 ¬nk)∧Kinj

(d) j < i and i = m and 〈rj , t〉 |= ni ∧ nj ∧ Ki(
∧j−1
k=1 ¬nk) ∧ Kinj

(11) 〈rj , t〉 |= nj ≺ ni iff
(a) i = j, t 6= 0 and 〈rj , t〉 |= ni ∧ Ki(

∧
nk∈N\{ni} ¬nk)

(b) i < j 6 m and 〈rj , t〉 |= ni ∧ nj ∧ Ki(
∧j−1
k=i+1 ¬nk) ∧ Kinj

(c) j < i < m and 〈rj , t〉 |= ni∧nj∧Ki(
∧m
k=i+1 ¬nk)∧Ki(

∧j−1
k=1 ¬nk)∧Kinj

(d) j < i and i = m and 〈rj , t〉 |= ni ∧ nj ∧ Ki(
∧j−1
k=1 ¬nk) ∧ Kinj

(e) ni = u and 〈rj , t〉 |= ¬nj ∨ (nj ∧ ( (¬Kk(nk � nj))))
4.4. Axiomatization.

The axioms of our theory are all instances of the following schemata:

A1 instances of tautologies
AT1 ¬© α↔©¬α
AT2 ©(α→ β)→ (©α→©β)
AT3 αUβ ↔ β ∨ (α ∧©(αUβ))
AT4 αUβ → Fβ
AT5  (α→ β)→ ( α→  β)
AT6 αSβ ↔ ( ⊥ ∧ β) ∨ (¬ ⊥ ∧ (β ∨ (α ∧ (αSβ))))
AT7 αSβ → Pβ
AT8 α↔© α
AT9 α↔  ⊥ ∨ ( ¬⊥ ∧ © α)

AT10 P⊥
AT11 ni → Gni
AK1 ϕ↔ Kiϕ, ϕ = ±ni
AK2 (Kiα ∧ Ki(α→ β))→ Kiβ
AK3 Kiα→ α
AK4 Kiα→ KiKiα
AK5 ¬Kiα→ Ki¬Kiα
AS1 ni � nj →

∧
nk∈N1\{nj} ¬(ni � nk), ni, nj ∈ N

AS2 ni ≺ nj →
∧
nk∈N1\{nj} ¬(ni ≺ nk), ni, nj ∈ N

AS3 ni ≺ nj →
∧
nk∈N1\{ni} ¬(nk ≺ nj), ni, nj ∈ N

AS4 ni ≺ nj → nj � ni, ni, nj ∈ N
AS5 ni � nj → Ki(ni � nj), ni, nj ∈ N
AS6 ((ni � nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni � nj), ni, nj , nk ∈ N

Inference rules:

MP from α and α→ β infer β
RTN from α infer ©α
RKN from α infer Kiα

RI from Φk(¬((
∧i
l=0©lα)∧©i+1β), (θj)j∈N) for all i > 0 infer Φk(¬(αUβ), (θj)j∈N)

[AT1 – AT10] are standard axioms of the linear temporal logic. [AT11] takes
into consideration specificity of our model and the restriction that when some ni
become >, then it will never be ⊥. While [AK1] takes into consideration specificity
of our model, [AK2 – AK5] are standard axioms for reasoning about knowledge.
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[AS1] says that a node can have only one successor. [AS2] says that a node can be
predecessor of only one node. [AS3] says that a node can have only one predecessor.
[AS4] says that if a node is predecessor of some other node, that other node has to
be its successor. [AS5] says that if a node ni has the successor nj than it knows
that nj is its successor. [AS6] says when the current successor will be the successor
in the next time instance.

[MP] is modus ponens, [RTN] and [RKN] resemble necessitations,and [RI] is the
infinitary inference rule that characterize the Until operator.

4.5. Soundness, Completeness and Decidability.
In this part we will prove that our system is sound, complete and decidable.

Informally speaking, the soundness means that we cannot prove anything that is
wrong, the completeness means that we can prove everything that is right, and
the decidability means that there is an effective method for determining whether
arbitrary formula is a theorem of our logical system.

The inference relation ` is defined as follows:

Definition 3. We say that α is syntactical consequence of a set of formulas T (or
that α is deducible or derivable from T ) and write T ` α iff there exists an at most
countably infinite sequence of α0, . . . , αφ such that αφ = α and for all β 6 φ, αβ
is an instance of some axiom, αβ ∈ T , or αβ can be obtained from some previous
members of the sequence by an application of some inference rule. A formula α is
a theorem (` α) if it is deducible from the empty set. The rules [RTN] and [RKN]
can be applied only to theorems.

Definition 4. A set T is inconsistent iff T ` ⊥, otherwise it is consistent. A set
T of formulae is maximal if for every formula α either α ∈ T or ¬α ∈ T . A set T
is deductively closed if for every formula α, if T ` α, then α ∈ T .

Theorem 1. [Soundness] ` α implies |= α.

Theorem 2. Every consistent set of formulas T can be extended to a maximal
consistent set T ∗.

Canonical structure. We define a special, so called canonical structure M∗ =
〈R,W, π,K〉. Let T be the set of all maximal consistent sets. Let T ∈ T . We define
a run inductively as: T 0

j = T , and T tj = {α :©α ∈ T t−1
j }, t > 0.

We denote:

• rjt = 〈xj,t0 , . . . , xj,tm−1〉, where xj,tl = > if nl ∈ T tj , and xj,tl = ⊥ otherwise,

• rj = 〈xj,t0 , . . . , xj,tm−1〉, t = 0, 1 . . .,

• R = {rj}.
Also:

• π(rj , t, nl) = xj,tl ,

• 〈rj , t〉Ki〈rj
′
, t′〉 iff ni ∈ T tj ⇔ ni ∈ T t

′

j′ .

Theorem 3. [Strong completeness] Every consistent set of formulas is satisfiable.

Theorem 4. T |= ψ ↔ T ` ψ.

Theorem 5 (Decidability theorem). Checking the satisfiability of a given formula
ψ is decidable.
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Proof. In every run at some time instance we will have stationary situation (at least
when all possible nodes join the system). Since we do not allow leaving of the nodes,
we can apply the ideas from [11, 13, 14] to prove the decidability problem. �

5. Proof of the Correctness

To be able to prove the correctness of the Chord protocol we need to introduce
the following definitions:

Definition 5 (Stable pair). The pair of nodes 〈nk, nl〉 is stable (we denote it with

nk e nl) at 〈rj′ , t〉 iff (nl �m1 nk) ∧ (
∧

16j6m1
Kij (nij � nij+1)) ∧ (nl ≺m1 nk) ∧

(
∧

16j6m1
Kij+1

(nij+1
≺ nij )), where nij ∈ Na.

Definition 6 (Stable network). Network is stable (we denote it with }) at 〈rj , t〉
iff nk e nk for all nk ∈ Na.

We introduce an integer constant f ∈ N, that will represent fairness condition,
i.e. it guarantees that a formula will be realized at maximum of f time instances.

The processes of the Chord network can be describe with:

ρS : H(
∧
nj∈N ¬nj) ∧ ni ∧ (

∧
nj∈N\{ni} ¬nj) ∧ Ki(ni � ni) ∧ Ki(ni ≺ u) for

one ni ∈ N,

ρJ,i:  (¬ni)∧ni∧
∨f
l=0©lKi(ni � nj)∧Ki(ni ≺ u), nj ∈ Na, ni ∈ N, i 6= j,

ρS1,i,j : (Ki(ni � nj) ∧ Kj(nj ≺ u)) ∨ (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧
niM〈nk, nj〉)→

∨f
l=0©lKj(nj ≺ ni), ni, nk, nj ∈ Na,

ρS2,i,j : Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉 →
∨f
l=0©lKi(ni � nk),

ni, nk, nj ∈ Na.

[ρS ] describes the start of the new Chord network. [ρJ,i] represents the situation
when a new node ni is joining the existing Chord network, while [ρS1,i,j ] and [ρS2,i,j ]
characterize stabilization processes in one Chord network.

To be able to describe periodicity of the stabilization process, we introduce the
following axioms:

ACF1: ni ∧ ρS →
∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ Na,

ACF2: ni ∧ ρS →
∨f
l=0©l

∨m−1
j=0 ρS2,i,j , ni ∈ Na,

ACF3: ni ∧ ρJ,i →
∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ Na,

ACF4: ni ∧ ρJ,i →
∨f
l=0©l

∨m−1
j=0 ρS2,i,j , ni ∈ Na,

ACF5: ni ∧ ρS1,i,k →
∨f
l=0©l

∨m−1
j=0 ρS1,i,j , ni ∈ Na, k ∈ {0,m− 1},

ACF6: ni ∧ ρS2,i,k →
∨f
l=0©l

∨m−1
j=0 ρS2,i,j , ni ∈ Na, k ∈ {0,m− 1}.

The correctness of the Chord protocol can be proved by the following Lemmas
and Theorem.

Lemma 1. Let a new node start a new Chord network. Then, there is a finite
period of time after the network will be stable again, if no other nodes are trying to
join in the meanwhile.

Lemma 2. Let a new node join a stable Chord network which consists of only one
node. Then, there is a finite period of time after the network will be stable again,
if no other nodes are trying to join in the meanwhile.

Proofs of Lemmas 1 and 2 are similar like the proof of Lemma 3.
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Lemma 3. Let a peer join a Chord network, between two nodes which constitute
a stable pair, such that the second node is the successor of the first node. Then,
there is a finite period of time after the starting pair will be stable again, if no other
nodes are trying to join in the meanwhile.

Lemma 4. Let a peer join a Chord network, between two nodes which constitute
a stable pair. Then, there is a finite period of time after the starting pair will be
stable again, if no other nodes are trying to join in the meanwhile.

Proof. Since one new node is joining the stable pair, we can choose two nodes which
are each others successor and predecessor and the new node is joining between them,
so we can apply Lemma 3. �

Lemma 5. Let a Chord network contain a stable pair. If a sequence of nodes join
between the nodes that constitute this stable pair, then there is a finite period of
time after the starting pair will be stable again.

Proof. If we assume that all nodes that want to join the network have different
successors, by Lemma 4 the statement holds.

If this is not the case, we can assume that nienk and that set of nodes j1, j2, . . .,
such that i 6 . . . 6 j2 6 j1 6 k, are joining this stable pair. Then, we can apply
Lemma 4 on the tuples 〈i, j1, k〉, 〈i, j2, j1〉, . . . . This process will have as a result
ni e nk, again. �

Theorem 6. ` ¬}→ F}

Proof. The unstable state can be reached only by joining of the new nodes, and,
since we do not allow node failures, this theorem is the corollary of Lemmas 1 –
5. �

6. Conclusion

The core part of the every IoT system are its discovery and control services.
In the distributed environment, these services can be realized using the Chord
protocol.

In this paper we provide the axiomatization and prove the soundness, strong
completeness and decidability of the logic of time and knowledge. Using this frame-
work, we prove the correctness of the maintenance of the ring topology of the Chord
protocol with the respect of the fact that nodes are not allowed to departure the
system after they join it.

Our plan is to continue our research to prove the correctness in the general case.
Also, one of the possible directions for further work is to apply the similar technique
to describe other DHT protocols and other cloud processes.

Another challenge could be to verify the given proof in one of the formal proof
assistants (e.g., Coq, Isabelle/HOL). It might also produce a certified program
implementation from the proof of correctness.

Appendix A. Proofs

Theorem 1. [Soundness] ` α implies |= α.
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Proof. AT1 ¬© α↔©¬α
〈rj , t〉 |= ¬© α iff 〈rj , t〉 6|=©α iff
〈rj , t+ 1〉 6|= α iff 〈rj , t+ 1〉 |= ¬α iff
〈rj , t〉 |=©¬α

AT2 ©(α→ β)→ (©α→©β)
〈rj , t〉 |=©(α→ β) iff 〈rj , t+ 1〉 |= α→ β iff 〈rj , t+ 1〉 |= ¬α ∨ β iff
〈rj , t+ 1〉 |= ¬α or 〈r, t+ 1〉 |= β iff
〈rj , t〉 |= ¬© α or 〈r, t〉 |=©β if
〈rj , t〉 |= ¬© α ∨©β iff
〈rj , t〉 |=©α→©β

AT3 αUβ ↔ β ∨ (α ∧©(αUβ))
〈rj , t〉 |= αUβ iff
〈rj , t+ i〉 |= β, i > 0 and 〈rj , t+ k〉 |= α and 0 6 k < i iff
〈rj , t〉 |= β or 〈rj , t+ i〉 |= β, i > 0 and 〈rj , t+ k〉 |= α and 0 6 k < i iff
〈rj , t〉 |= β or 〈rj , t〉 |= α and 〈r, t + i〉 |= β and 〈rj , t + k〉 |= α and

1 6 k < i iff
〈rj , t〉 |= β or 〈rj , t〉 |= α and 〈r, t + i − 1〉 |= β and 〈r, t + k − 1〉 |= α

and 0 6 k − 1 < i− 1 iff
〈rj , t〉 |= β or 〈rj , t〉 |= α and 〈rj , t〉 |=©(αUβ) iff
〈rj , t〉 |= β ∨ (α ∧©(αUβ))

AT4 αUβ → Fβ
〈rj , t〉 |= αUβ iff
〈rj , t+ i〉 |= β, i > 0 and 〈r, t+ k〉 |= α and 0 6 k < i if
〈rj , t+ i〉 |= β and exists i > 0 iff
〈rj , t〉 |= Fβ

[AT5 – AT7] similarly like [AT2 – AT4] regarding the sub-case 〈rj , 0〉.
AT8 α↔© α

〈rj , t〉 |= α iff 〈rj , t+ 1〉 |=  α iff 〈rj , t〉 |=© α
[AT9] similarly like [AT8], regarding the sub-case 〈rj , 0〉.

AT10 P⊥
〈rj , t〉 |= P⊥ iff 〈rj , 0〉 |=  ⊥

AT11 ni → Gni
Because of the restriction if xj,ti = > then xj,t+1

i = >.

AK1 ϕ↔ Kiϕ, ϕ = ±ni
〈rj , t〉 |= ϕ iff

〈rj′ , t′〉 |= ϕ and all 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) iff
〈rj , t〉 |= Kiϕ

AK2 (Kiα ∧ Ki(α→ β))→ Kiβ
〈rj , t〉 |= Kiα ∧ Ki(α→ β) iff
〈rj , t〉 |= Kiα and 〈rj , t〉 |= Ki(α→ β) iff

〈rj′ , t′〉 |= α for all 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) and 〈r′, t′〉 |= α → β for all

〈rj′ , t′〉 ∈ Ki(〈rj , t〉) iff

〈rj′ , t′〉 |= α ∧ (α→ β) for all 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) if

〈rj′ , t′〉 |= β for all 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) iff
〈rj , t〉 |= Kiβ

AK3 Kiα→ α
〈rj , t〉 |= Kiα iff
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〈rj′ , t′〉 |= α and 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) then
〈rj , t〉 |= α

AK4 Kiα→ KiKiα
〈rj , t〉 |= Kiα iff

〈rj′ , t′〉 |= α and 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) then

〈rj′′ , t′′〉 |= α and 〈rj′′ , t′′〉 ∈ Ki(〈rj
′
, t′〉) iff

〈rj′ , t′〉 |= Kiα and 〈rj′ , t′〉 ∈ Ki(〈rj , t〉) iff
〈rj , t〉 |= KiKiα

AK5 ¬Kiα→ Ki¬Kiα
Similarly like [AK4]

AS1 ni � nj →
∧
nk∈N1\{nj} ¬(ni � nk), ni, nj ∈ N

Let 〈rl, t〉 |= ni � nj .
If i = j , by the definition of ni � ni we have that

〈rl, t〉 |= ni ∧ Ki(
∧
nj∈N\{ni} ¬nj),

and by [AK3] and [A1] we have that

〈rl, t〉 |=
∧
nj∈N\{ni} ¬nj

so, there is no candidate nk ∈ N1\{ni} such that ni � nk.
Let i 6= j and let

〈rl, t〉 |= ni � nj′
and i < j′ < j 6 m. Then, by the definition of � relation we have

ni � nj′ → Kinj′ ,

and

ni � nj → Ki(

j−1∧
k=i+1

¬nk).

Last two facts are in contradiction.
Similarly in all other cases.

AS2 ni ≺ nj →
∧
nk∈N1\{nj} ¬(ni ≺ nk), ni, nj ∈ N

Similarly like [AS1].
AS3 ni ≺ nj →

∧
nk∈N1\{ni} ¬(nk ≺ nj), ni, nj ∈ N

Similarly like [AS1].
AS4 ni ≺ nj → nj � ni, ni, nj ∈ N

Let 〈rl, t〉 |= ni ≺ nj .
If i = j , by the definition of ni ≺ ni we have that

〈rl, t〉 |= ni ∧ Ki(
∧
nj∈N\{ni} ¬nj),

so we have 〈rl, t〉 |= ni � nj .
Let i 6= j and j < i 6 m, then

〈rl, t〉 |= nj ∧ ni ∧ Kj(
i−1∧

k=j+1

¬nk) ∧ Kjni,

which means that:

〈rl, t〉 |= nj � ni.
Similarly in all other cases.
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AS5 ni � nj → Ki(ni � nj), ni, nj ∈ N
Suppose opposite, that

〈rl, t〉 |= (ni � nj) ∧ ¬Ki(ni � nj).
Then we have:

〈rl, t〉 |= ni � nj and 〈rl, t〉 |= ¬Ki(ni � nj)),
and

〈rl, t〉 6|= Ki(ni � nj).
By [AK3], we have that:

〈rl, t〉 6|= ni � nj ,
which cannot hold.

AS6 ((ni � nj) ∧ nkM〈ni, nj〉 ∧©(¬Kink))→©(ni � nj), ni, nj , nk ∈ N

Let 〈rj′ , t〉 |= ((ni � nj) ∧ nkM〈ni, nj〉 ∧ ©(¬Kink)), and suppose that

〈rj′ , t + 1〉 6|= (ni � nj). Without loss of generality we can assume that
j < i 6 m− 1. The, by the definition of � and M we have that

(1) 〈rj
′
, t〉 |= ni ∧ nj ∧ Ki(

j−1∧
l=i+1

¬nl) ∧©Ki(

j−1∧
l=i+1

¬nl) ∧ Kinj .

From 〈rj′ , t+ 1〉 6|= (ni � nj) we can conclude that for some k, i < k < j

〈rj′ , t+ 1〉 |= (ni � nk). By the definition of �:

〈rj
′
, t+ 1〉 |= ni ∧ nk ∧ Ki(

k−1∧
l=i+1

¬nl) ∧ Kink,

which is in contradiction with (1).

[MP], [RTN] and [RKN] in standard way (see [11, 13, 14])

RI from Φk(¬((
∧i
l=0©lα)∧©i+1β), (θj)j∈N) for all i > 0 infer Φk(¬(αUβ), (θj)j∈N)

We show that [RI] produces valid formula for a valid set of premises by
induction on k. Suppose that

〈rj
′
, t〉 |= Φk(¬((

i∧
l=0

©lα) ∧©i+1β), (θj)j∈N), for i > 0.

Then
〈rj
′
, t〉 |= Φk(¬(αUβ), (θj)j∈N)

by following: Induction base.
k = 0:
Note that:
if 〈rj′ , t〉 6|= θ0 → ¬(αUβ) then

〈rj′ , t〉 |= θ0 ∧ (αUβ) iff

〈rj′ , t〉 |= θ0 and 〈rj , t〉 |= αUβ iff

(2) 〈rj
′
, t〉 |= θ0 and 〈rj

′
, t+ i0〉 |= β and 〈rj

′
, t+ l〉 |= α, 0 6 l < i0

〈rj′ , t〉 |= {θ0 → ¬((
∧i
l=0©lα) ∧©i+1β)|i > 0} iff

(3) 〈rj
′
, t〉 |= ¬θ0 and (〈rj

′
, t+ i〉 6|= β and 〈rj

′
, t+ l〉 6|= α, 0 6 l < i for all i > 0
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which in contradiction with (2).
Inductive step.

Let 〈rj′ , t〉 |= Φk+1(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N) for i > 0, i.e.

〈rj
′
, t〉 |= θk+1 → KekΦk(¬((

i∧
l=0

©lα) ∧©i+1β), (θj)j∈N)

for i > 0 and 0 6 ek < m. Let us assume opposite, that

〈rj
′
, t〉 6|= Φk+1(¬(αUβ), (θj)j∈N), i.e.

〈rj
′
, t〉 |= θk+1 ∧ ¬Φk(¬(αUβ), (θj)j∈N).

Also, we have:

〈rj
′
, t〉 |= KekΦk(¬((

i∧
l=0

©lα) ∧©i+1β), (θj)j∈N)

for i > 0. For every 〈rj′′ , t′〉 ∈ Kek(〈rj′ , t〉) we have that:

〈rj
′′
, t′〉 |= Φk(¬((

i∧
l=0

©lα) ∧©i+1β), (θj)j∈N)

and by induction hypothesis

〈rj
′′
, t′〉 |= Φk(¬(αUβ), (θj)j∈N).

Therefore:
〈rj
′
, t〉 |= KekΦk(¬(αUβ), (θj)j∈N)

which is a contradiction.

�

Theorem 7 (Deduction theorem). T ∪ {ϕ} ` ψ implies T ` ϕ→ ψ.

Proof. If ψ is an axiom or ψ ∈ T , then T ` ψ, so since T ` ψ → (ϕ → ψ) [A1] by
[MP] T ` ϕ→ ψ. If ϕ = ψ then T ` ϕ→ ϕ [A1].

If ψ is a theorem then, ` ©ψ. By weakening T ` ©ψ, so T ` ϕ → ©ψ.
Similarly for [RKN] rule.

Let us assume that ψ if obtained from T ∪ {ϕ} using [RI] rule, i.e. ψ =
Φk(¬(αUβ), (θj)j∈N). Then we have:

T, ϕ ` Φk(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N) for all i > 0,

T ` ϕ→ Φk(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N), by induction hypothesis,

T ` ϕ → (θk → KekΦk−1(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N)), 0 6 ek < m,

by the definition of Φk
T ` (ϕ∧θk)→ KekΦk−1(¬((

∧i
l=0©lα)∧©i+1β), (θj)j∈N), by propositional

tautology (p→ (q → r))↔ ((p ∧ q)→ r).
If we denote by (θ̄j)j∈N the sequence which coincides everywhere with
(θj)j∈N for j 6= k, with the exception that θ̄k ≡ ϕ ∧ θk we get that:

T ` θ̄k → Kek−1
Φk−1(¬((

∧i
l=0©lα) ∧©i+1β), (θ̄j)j∈N),

T ` Φk(¬((
∧i
l=0©lα) ∧©i+1β), (θ̄j)j∈N) for all i > 0,

T ` Φk(¬(αUβ), (θ̄j)j∈N) by application of [RI]
T ` (ϕ ∧ θk)→ Kek−1

Φk−1(¬(αUβ), (θ̄j)j∈N)
T ` ϕ→ (θk → Kek−1

Φk−1(¬(αUβ), (θj)j∈N))
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T ` ϕ→ Φk(¬(αUβ), (θj)j∈N))
T ` ϕ→ ψ.

�

Definition 7. For a given set of formulae T we define set ∗T = {∗α|α ∈ T} and
∗ ∈ {Ki,©, }, 0 6 i < m. Also, for a given set of formulae T we define set
K−i (T ) = {α|Kiα ∈ T}.

Lemma 6. Let α, β be formulae:

LF1 ` Gα↔ α ∧©Gα,
LP1 ` Hα↔ α ∧ Hα,
LF2 ` G© α↔©Gα,
LP2 ` H α↔  Hα,
LF3 (©α→©β)→©(α→ β),
LP3 ( α→  β)→  (α→ β),
LF4 (©α ∧©β)↔©(α ∧ β),
LP4 ( α ∧ β)↔  (α ∧ β),
LF5 (©α ∨©β)↔©(α ∨ β),
LP5 ( α ∨ β)↔  (α ∨ β),
LF6 Gα ` ©iα, i > 0,
LP6 Hα ` ( ⊥ ∧ α) ∨ iα, i > 0,
LF7 if ` α then ` Gα,
LP7 if ` α then ` Hα,
LF8 if T ` α, where T is a set of formulae, then ©T ` ©α,
LP8 if T ` α, where T is a set of formulae, then  T `  α,
LF9 for j > 0, ©jβ,©0α, . . . ,©j−1α ` αUβ,
LP9 for j > 0,  jβ, j−1α, . . . , 0α ` αSβ,
LK if T ` γ, where T is a set of formulae, then KeT ` Keγ for any 0 6 e < m.

Proof. LF1 ` Gα↔ α ∧©Gα
` ¬(>U¬α)↔ ¬(¬α∨ (>∧©(>U¬α))) (by definition of G and [AT4])
` ¬(>U¬α)↔ α ∧ (⊥ ∨©¬(>U¬α)) (by [AT1])
` ¬(>U¬α)↔ α ∧©¬(>U¬α) (property of ∨)
` Gα↔ α ∧©Gα (by definition of G)

LF2 – LF7 The proofs are the consequences of the temporal part of the above
axiomatization.

LF8 if T ` α, where T is a set of formulae, then ©T ` ©α
We will prove this by the induction on the length of the proof of α from

T .
Suppose that α is obtained by the inference rule [MP] from β → α and

β. Then we have:
©T ` ©(β → α) (induction hypothesis)
©T ` ©(β → α)→ (©β →©α) [AT2]
©T ` ©β →©α [MP]
©T ` ©β (induction hypothesis)
©T ` ©α [MP]

Similarly we can prove the case when α is obtained using [RTN] and
[RKN].

Suppose that α = Φk(¬(γUβ), (θj)j∈N) = θk → KiΦk−1(¬(γUβ), (θj)j∈N)
is obtained by the inference rule [RI]. Then:
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for 0 6 e < m, i > 0, ©T ` ©Φk(¬((
∧i
l=0©lγ) ∧ ©i+1β), (θj)j∈N),

by induction hypothesis

for 0 6 e < m, i > 0, ©T ` ©(θk → KeΦk−1(¬((
∧i
l=0©lα) ∧

©i+1β), (θj)j∈N)), by definition of Φk
for 0 6 e < m, i > 0, ©T ` ©(θk → KeΦk−1(¬((

∧i
l=0©lα) ∧

©i+1β), (θj)j∈N))→ (©θk →©KeΦk−1(¬((
∧i
l=0©lα)∧©i+1β), (θj)j∈N))

[AT2]

for 0 6 e < m, i > 0, ©T ` ©θk → ©KeΦk−1(¬((
∧i
l=0©lα) ∧

©i+1β), (θj)j∈N) [MP]
for 0 6 e < m, ©T ` (©θk →©KeΦk−1(¬(γUβ), (θj)j∈N)) [RI]
for 0 6 e < m, ©T ` (©θk → ©KeΦk−1(¬(γUβ), (θj)j∈N)) →
©(θk → KeΦk−1(¬(γUβ), (θj)j∈N)) (LF3)
for 0 6 e < m, ©T ` ©(θk → KeΦk−1(¬(γUβ), (θj)j∈N)) [MP]
©T ` ©Φk(¬(γUβ), (θj)j∈N) , by definition of Φk.

LF9 for j > 0, ©jβ,©0α, . . . ,©j−1α ` αUβ
By propositional reasoning we can obtain:

©jβ,©0α, . . .©j−1 α `β ∨ (α ∧ (©β ∨ (©α ∧ (. . . (©j−1β ∨ (©j−1α∧
(©jβ ∨ (©jα ∧©j+1(αUβ)))))) . . .))).

Since

` β∨(α∧(©β∨(©α∧(. . . (©j−1β∨(©j−1α∧(©jβ∨(©jα∧©j+1(αUβ)))))) . . .)))→ αUβ

can be gained using [AT3], we have

©jβ,©0α, . . . ,©j−1α ` αUβ.
LP1 – LP9 The proofs are similar to the [LF1 – LF9] respectively.
LK if T ` γ, where T is a set of formulae, then KeT ` Keγ for any 0 6 e < m

We use the transfinite induction on the length of proof T ` γ. Suppose
that T ` γ where γ ≡ Φk(¬(αUβ), (θj)j∈N)) is obtained using [RI] rule.
Then:

T ` Φk(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N) for all i ≥ 0

KeT ` KeΦk(¬((
∧i
l=0©lα)∧©i+1β), (θj)j∈N) by induction hypothesis,

KeT ` > → KeΦk(¬((
∧i
l=0©lα) ∧©i+1β), (θj)j∈N) for all i > 0

KeT ` Φk+1(¬((
∧i
l=0©lα)∧©i+1β), (θ̄j)j∈N) where (θ̄j)j∈N is a nested

k + 1-sequence such that θ̄k+1 ≡ >, and which coincides everywhere
with (θ̄j)j∈N for j 6= k + 1
KeT ` Φk+1(¬(αUβ), (θj)j∈N)) by [RI]
KeT ` > → KeΦk(¬(αUβ), (θj)j∈N))
KeT ` > → Keγ
KeT ` Keγ

�

Theorem 2. Every consistent set of formulas T can be extended to a maximal
consistent set T ∗.

Proof. Let us assume that For = {αi|i > 0} is the set of all formulas. The maxi-
mally consistent set T ∗ is defined recursively, as follows:

(1) T0 = T ,
(2) If αi is consistent with Ti then Ti+1 = Ti ∪ {αi},
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(3) If αi is not consistent with Ti and has form Φk(¬(αUβ), (θj)j∈N)) then

Ti+1 = Ti ∪ {¬αi,¬Φk(¬((

n0∧
l=0

©lα) ∧©n0+1β), (θj)j∈N)}

where n0 is a positive integer such that Ti+1 is consistent,
(4) Otherwise Ti+1 = Ti,
(5) T ∗ =

⋃
n>0 Tn.

The set Ti+1 obtained by the steps 2 or 4 is obviously consistent. Let us consider
the step 3.

If we suppose that ¬Φk(¬((
∧n
l=0©lα)∧©n+1β), (θj)j∈N) is not consistent with

Ti for every n > 0 then by Deduction theorem, Ti ` Φk(¬((
∧n
l=0©lα)∧©n+1β), (θj)j∈N)

for every n > 0, and by [RI] we have Ti ` Φk(¬(αUβ), (θj)j∈N)) which contradicts
the assumption. Thus, the set Ti obtained by the step 3 is also consistent. Also,
the construction guarantees that for each α ∈ For, either α ∈ T ∗ or ¬α ∈ T ∗.

To prove that that T ∗ is deductively closed it is sufficient to prove that it is
closed under the inference rules. We will only prove closeness under the inference
rule [RI] since the other cases are straightforward.

Suppose that Φk(¬(αUβ), (θj)j∈N)) /∈ T ∗, while Φk(¬((
∧n
l=0©lα)∧©n+1β), (θj)j∈N) ∈

T ∗ for every n > 0. By maximality of T ∗, ¬Φk(¬(αUβ), (θj)j∈N) ∈ T ∗. If
αi = Φk(¬(αUβ), (θj)j∈N)), then, by the construction of T ∗ there is n0 such that
¬Φk(¬((

∧n0

l=0©lα)∧©n0+1β), (θj)j∈N) ∈ Ti which contradicts the fact that Φk(¬((
∧n
l=0©lα)∧

©n+1β), (θj)j∈N) ∈ T ∗ for every n > 0. �

Lemma 7. T tj is a maximal consistent set.

Proof. The proof is by induction on t. By hypothesis, T 0
j is maximal and consistent.

Let t > 0 and T tj be maximal and consistent.

Suppose that T t+1
j is not maximal. There is a formula α such that {α,¬α} ∩

T t+1
j = ∅. Consequently, {©α,©¬α} ∩ T tj = ∅. Thus, we have that {©α,¬ ©
α} ∩ T tj = ∅ which is in contradiction with the maximality of T tj .

Suppose that T t+1
j is not consistent, i.e. T t+1

j ` α ∧ ¬α, for any formula α. By

[LF8], ©T t+1
j ` ©(α∧¬α) and T tj ` ©(α∧¬α). By [LF4] and [AT1] we can show

that T tj ` ©α ∧ ¬© α, which is in contradiction with consistency of T tj . �

Theorem 3. [Strong completeness] Every consistent set of formulas is satisfiable.

Proof. We prove that γ ∈ T tj iff 〈rj , t〉 |= γ by induction on complexity of γ.

• γ ∈ N. This is immediate consequence of the definition of π.
• The proof in the cases when γ is a negation or a conjunction is standard.
• γ =©α.

〈rj , t〉 |=©α iff 〈rj , t+ 1〉 |= α iff α ∈ T t+1
j iff ©α ∈ T tj

• γ = αUβ.
Suppose that 〈rj , t〉 |= αUβ. There is some i > 0 such that 〈r, t+ i〉 |= β

and for every l, 0 6 l < i, 〈rj , t + l〉 |= α. By the induction hypothesis,

β ∈ T t+ij , for i > 0, and α ∈ T t+lj , for 0 6 l < i. By the construction of

M∗, we have ©iβ ∈ T tj , for i > 0, and ©lα ∈ T tj , for 0 6 l < i. Thus, by

[L9], we have that αUβ ∈ T tj .
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For the other direction, assume that αUβ ∈ T tj . By construction of the

model M∗, for some i > 0,©iβ ∈ T tj , i.e. β ∈ T t+ij . Let i0 = min{i :©iβ ∈
T tj }. If i0 = 0, β ∈ T tj , and by the induction hypothesis 〈rj , t〉 |= β. It

follows that 〈rj , t〉 |= αUβ. Thus, suppose that i0 > 0. For every i such
that 0 6 i < i0, ©iβ 6∈ T tj , i.e. β 6∈ T t+ij . So we have that αUβ ∈ T tj
and β ∨ (α ∧ (©β ∨ (©α ∧ . . . ∧ (©i0−1β ∨ (©i0−1α ∧©i0(αUβ) . . .) ∈ T tj .

It follows that for every i < i0, ©iα ∈ 〈rj , t〉, α ∈ 〈rj , t + i〉, and by the
induction hypothesis 〈rj , t + i〉 |= α. From 〈rj , t + i0〉 |= β, it follows that
〈rj , t〉 |= αUβ.
• γ =  α.

– t = 0
If  α ∈ T 0

j by definition we have 〈rj , 0〉 |=  α.

Also, if 〈rj , 0〉 |=  α then  ⊥ ∈ T 0
j , so: ` ⊥ → α iff `  (⊥ → α) iff

`  ⊥ →  α iff  ⊥ `  α iff  α ∈ T 0
j

– t > 0
 α ∈ T tj iff© α ∈ T t−1

j iff α ∈ T t−1
j iff 〈rj , t−1〉 |= α iff 〈rj , t〉 |=  α

• γ = αSβ.
– t = 0

If αSβ ∈ T 0
j , by [AT6] β ∈ T 0

j , thus 〈rj , 0〉 |= αSβ.

If 〈rj , 0〉 |= αSβ then 〈rj , 0〉 |= β and β, ⊥ ∈ T 0
j , thus by [AT6]

αSβ ∈ T 0
j .

– t > 0
Suppose that 〈rj , t〉 |= αSβ. There is some 0 6 i 6 t such that
〈rj , t − i〉 |= β and for every l, 0 6 l < i, 〈rj , t − l〉 |= α. Thus,

β ∈ T t−ij , for 0 6 i 6 t, and α ∈ T t−lj , for 0 6 l < i. By the

construction of M∗, we have  iβ ∈ T tj , for 0 6 i 6 t, and  lα ∈ T tj ,

for 0 6 l < i. Thus, by [LP9], we have that αSβ ∈ T tj .

Contrariwise, αSβ ∈ T tj . By [AT6] we have that α ∧ (αSβ)) ∈ T tj . If

β ∈ T tj then 〈rj , t〉 |= β and consequently 〈rj , t〉 |= αSβ. Otherwise, if

β 6∈ T tj then α ∈ T tj and  (αSβ) ∈ T tj . By [LF8] © (αSβ) ∈ T t−1
j ,

and by [AT8] αSβ ∈ T t−1
j . For some k < t, we have 〈rj , t〉 |=  kβ and

〈rj , t〉 |=  lα, for 0 6 l < k. Thus, we have that 〈rj , t〉 |= αSβ.
• γ = Kiα.

Suppose Kiα ∈ T tj , then α ∈ K−i (T tj ). Also, T tj ⊃ Ki(K
−
i (T tj )), so for

each 〈rj′ , t′〉 such that 〈rj , t〉Ki〈rj
′
, t′〉 (by the definition of relation Ki),

〈rj′ , t′〉 |= α. By induction hypothesis (α is subformula of Kiα), we have
that 〈rj , t〉 |= Kiα.

Conversely, let 〈rj , t〉 |= Kiα and assume the opposite, i.e. that Kiα /∈
T tj . Then K−i (T tj ) ∪ {¬α} is consistent. Otherwise, by Deduction theorem

K−i (T tj ) ` α, by [LK], and T tj ⊃ Ki(K
−
i (T tj )) ` Kiα, by maximality of T tj , and

Kiα ∈ T tj which is a contradiction. Thus, K−i (T tj ) ∪ {¬α} can be extended

to a maximal consistent set T t
′

j′ , and:

ni ∈ T tj ⇒ Kini ∈ T tj ⇒ ni ∈ Ki(T
t
j )⇒ ni ∈ T t

′

j′ .



20BOJAN MARINKOVIĆ, ZORAN OGNJANOVIĆ, PAOLA GLAVAN, ANTON KOS, AND ANTON UMEK

Similarly, for ¬ni ∈ T tj . Thus, we have 〈rj , t〉Ki〈rj
′
, t′〉. Since ¬α ∈ T t′j′ ,

then 〈rj′ , t′〉 |= ¬α by induction hypothesis, so 〈rj′ , t′〉 6|= α, which is a
contradiction.

�

Lemma 3. Let a peer join a Chord network, between two nodes which constitute
a stable pair, such that the second node is the successor of the first node. Then,
there is a finite period of time after the starting pair will be stable again, if no other
nodes are trying to join in the meanwhile.

Proof. Let us assume that ni, nj ∈ Na and ni e nj , i.e. (ni � nj) ∧ (nj ≺ ni) and
that nk tries to join that stable pair. Let us denote

α =  (ni e nj) ∧ ρJ,k
∧
nl∈I

5f∧
t=0

©t¬nl, I = {nl|nlM〈ni, nj〉, nk 6= nl, nj 6= nl}

.
We have,

α ` Ki(ni � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉 ∧ nk

(by AS6) (1)

α ` Ki(ni � nj)
(by definition of ∧ and 1) (2a)

α ` Kj(nj ≺ ni)
(by definition of ∧ and 1) (2b)

α ` nkM〈ni, nj〉
(by definition of ∧ and 1) (2c)

α ` nk
(by definition of ∧ and 1) (2d)

α ` ρJ,k
(by definition of α) (2e)

α ` nk ∧ ρJ,k
(by 2d, 2e) (2f)

α ` ρJ,k →
f∨
l=0

©lKk(nk � nj)

(by definition of ρJ,k) (3)

α `
f∨
l=0

©lKk(nk � nj)

(by MP, 2e, 3) (4)

α `
f∨
l=0

©lKk(nk � nj)→ #fKk(nk � nj),

(by definition of AS6,4) (5)

α ` #fKk(nk � nj)
(by MP, 4, 5) (6)
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α ` nk ∧ ρJ,k →
f∨
l=0

©lρS1,k,j

[ACF3] (7)

α `
f∨
l=0

©lρS1,k,j

(by MP, 2f,7) (8a)

α ` ©fρS1,k,j

(by AS6) (8b)

α ` ©f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉)→
f∨
l=0

©lKj(nj ≺ nk))

(by 8b) (9a)

α ` #f ((Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉))→ #f (

f∨
l=0

©lKj(nj ≺ nk))

(by AT2, 9a) (9b)

α ` #fKk(nk � nj)
(by AS6, 6) (10a)

α ` #fKk(nj ≺ ni)
(by AS6, 2b) (10b)

α ` #f (nkM〈ni, nj〉)
(by AS6, 2c) (10c)

α ` #f (Kk(nk � nj) ∧ Kj(nj ≺ ni) ∧ nkM〈ni, nj〉)
(by LF4, 10a, 10b, 10c) (11)

α ` #f (

f∨
l=0

©lKj(nj ≺ nk))

(by MP, 9,11) (12)

α ` #2fKj(nj ≺ nk)

(by definition of #, AS6, 12) (13)

α `
2f∨
l=f

©l
m−1∨
j=0

ρS2,i,j

(by ni ∈ Na and ACF2 or ACF4) (14)

α `
2f∨
l=f

©lρS2,i,k

(by definition of ∨,14) (15a)

α ` ©2fρS2,i,k

(by definition AS6,15a) (15b)
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α ` #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉)→
f∨
l=0

©lKi(ni � nk))

(by 15b) (16a)

α ` #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉))→ #2f (

f∨
l=0

©lKi(ni � nk))

(by AT2, 16a) (16b)

α ` #2fKi(ni � nj)
(by AS6, 2a) (17a)

α ` #2fKj(nj ≺ nk)

(by AS6, 13) (17b)

α ` #2f (nkM〈ni, nj〉)
(by AS6, 2c) (17c)

α ` #2f (Ki(ni � nj) ∧ Kj(nj ≺ nk) ∧ nkM〈ni, nj〉)
(by LF4, 17a, 17b, 17c) (18)

α ` #2f (

f∨
l=0

©lKi(ni � nk))

(by MP, 16b,18) (19)

α ` #3fKi(ni � nk),

(by definition of #, AS6,19) (20)

α `
4f∨
l=3f

©l
m−1∨
j=0

ρS1,i,j

(by ni ∈ Na and ACF1 or ACF3) (21)

α `
4f∨
l=3f

©lρS1,i,k

(by definition of ∨,21) (22a)

α ` ©4fρS1,i,k

(by definition AS6, 22a) (22b)

α ` #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉)→
f∨
l=0

©lKk(nk ≺ ni))

(by 22b) (23a)

α ` #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉))→ #4f (

f∨
l=0

©lKk(nk ≺ ni))

(by definition of AT2, 23a) (23b)

α ` #4fKi(ni � nk)

(by AS6, 29) (24a)

α ` #4fKk(nk ≺ u)

(by AS6, 2e) (24b)
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α ` #4f (nkM〈ni, nj〉)
(by AS6, 2c) (24c)

α ` #4f (Ki(ni � nk) ∧ Kk(nk ≺ u) ∧ nkM〈ni, nj〉)
(by LF4, 24a, 24b, 24c) (25)

α ` #4f (

f∨
l=0

©lKk(nk ≺ ni))

(by MP, 23b,25) (26)

α ` #5fKk(nk ≺ ni)
(by definition of #, AS6,26) (27)

α ` #5fKk(nk � nj)
(by AS6, 6) (28)

α ` #5fKj(nj ≺ nk)

(by AS6, 13) (29)

α ` #5fKi(ni � nk)

(by AS6, 20) (30)

α ` #5fKk(nk ≺ ni)
(by AS6, 27) (31)

α ` #5f (Kk(nk � nj) ∧ Kj(nj ≺ nk) ∧ Ki(ni � nk) ∧ Kk(nk ≺ ni))
(by LF4, 28, 29, 30, 31) (32)

α ` #5f (ni e nj)

(by definition of e) (33)

�
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