358 research outputs found
Intraoperative Corneal Thickness Changes during Pulsed Accelerated Corneal Cross-Linking Using Isotonic Riboflavin with HPMC.
Purpose. To evaluate corneal thickness changes during pulsed accelerated corneal cross-linking (CXL) for keratoconus using a new isotonic riboflavin formula. Methods. In this prospective, interventional, clinical study patients with grades 1-2 keratoconus (Amsler-Krumeich classification) underwent pulsed accelerated (30 mW/cm(2)) CXL after application of an isotonic riboflavin solution (0.1%) with HPMC for 10 minutes. Central corneal thickness (CCT) measurements were taken using ultrasound pachymetry before and after epithelial removal, after riboflavin soaking, and immediately after completion of UVA treatment. Results. Twenty eyes of 11 patients (4 males, 7 females) were enrolled. Mean patient age was 26 ± 3 (range from 18 to 30 years). No intraoperative or postoperative complications were observed in any of the patients. Mean CCT was 507 ± 35 μm (range: 559-459 μm) before and 475 ± 40 μm (range: 535-420 μm) after epithelial removal (P < 0.001). After 10 minutes of riboflavin instillation, there was a statistically significant decrease of CCT by 6.2% from 475 ± 40 μm (range: 535-420 μm) to 446 ± 31 μm (range: 508-400) (P < 0.005). There was no other statistically significant change of CCT during UVA irradiation. Conclusions. A significant decrease of corneal thickness was demonstrated during the isotonic riboflavin with HPMC application while there was no significant change during the pulsed accelerated UVA irradiation
Can We Improve the Preprocessing of Photospheric Vector Magnetograms by the Inclusion of Chromospheric Observations?
The solar magnetic field is key to understanding the physical processes in
the solar atmosphere. Nonlinear force-free codes have been shown to be useful
in extrapolating the coronal field upward from underlying vector boundary data.
However, we can only measure the magnetic field vector routinely with high
accuracy in the photosphere, and unfortunately these data do not fulfill the
force-free condition. We must therefore apply some transformations to these
data before nonlinear force-free extrapolation codes can be self-consistently
applied. To this end, we have developed a minimization procedure that yields a
more chromosphere-like field, using the measured photospheric field vectors as
input. The procedure includes force-free consistency integrals, spatial
smoothing, and -- newly included in the version presented here -- an improved
match to the field direction as inferred from fibrils as can be observed in,
e.g., chromospheric H images. We test the procedure using a model
active-region field that included buoyancy forces at the photospheric level.
The proposed preprocessing method allows us to approximate the chromospheric
vector field to within a few degrees and the free energy in the coronal field
to within one percent.Comment: 22 pages, 6 Figur
Thin accretion disc with a corona in a central magnetic field
We study the steady-state structure of an accretion disc with a corona
surrounding a central, rotating, magnetized star. We assume that the
magneto-rotational instability is the dominant mechanism of angular momentum
transport inside the disc and is responsible for producing magnetic tubes above
the disc. In our model, a fraction of the dissipated energy inside the disc is
transported to the corona via these magnetic tubes. This energy exchange from
the disc to the corona which depends on the disc physical properties is
modified because of the magnetic interaction between the stellar magnetic field
and the accretion disc. According to our fully analytical solutions for such a
system, the existence of a corona not only increases the surface density but
reduces the temperature of the accretion disc. Also, the presence of a corona
enhances the ratio of gas pressure to the total pressure. Our solutions show
that when the strength of the magnetic field of the central neutron star is
large or the star is rotating fast enough, profiles of the physical variables
of the disc significantly modify due to the existence of a corona.Comment: Accepted for publication in Astrophysics & Space Scienc
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Orbital stability of spherical galactic models
International audienceWe consider the three dimensional gravitational Vlasov Poisson system which is a canonical model in astrophysics to describe the dynamics of galactic clusters. A well known conjecture is the stability of spherical models which are nonincreasing radially symmetric steady states solutions. This conjecture was proved at the linear level by several authors in the continuation of the breakthrough work by Antonov in 1961. In a previous work, we derived the stability of anisotropic models under {\it spherically symmetric perturbations} using fundamental monotonicity properties of the Hamiltonian under suitable generalized symmetric rearrangements first observed in the physics litterature. In this work, we show how this approach combined with a {\it new generalized} Antonov type coercivity property implies the orbital stability of spherical models under general perturbations
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018
Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe
- …