302 research outputs found

    Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    Get PDF
    The particle production of an accelerator is characterised by the accelerated species of particles, by their number and energy. The particle rate is determined by the production cross section, a natural constant and the accelerator dependent parameter luminosity. The luminosity is proportional to the number of particles in each beam and inversely proportional to the particle beam transverse dimensions. The luminosity increases with the particle beam density and therefore the probability of interactions too. To optimize the transverse beam sizes, profile monitors are used to measure parameter depending changes. Different monitors can provide beam transversal profile measurements (Wire Scanners, Synchrotron Light Monitors, Rest Gas Profile Monitors), however the wire scanner monitor is considered to be the most accurate of all monitors. Wire scanner instruments measure the transverse beam density profile in a particle accelerator by means of moving a thin wire in an intermittent manner. In the next years the luminosity of the Large Hadron Collider (LHC) will be significantly increased and more accurate beam profile measurement will necessary. The new performance demands a wire travelling speed up to 20 m.s-1 and a position measurement accuracy of the order of few micros. The existing wire scanners does not reach the new requirements as their accuracy achieved is limited by the motorization, the angular position measurement system located outside of the vacuum vessels and the vibration of the thin carbon wire which has been identified as one of the major error sources reducing the knowledge of the wire position. Therefore the development of a new device whose accuracy meets the new requirements was mandatory. This thesis work aims to provide suitable inputs for the design and operation of this new fast wire scanner in order to minimize the uncertainties in the wire position. To accomplish the aims the understanding of the wire vibrations in such a system is one of the main goals of this work. More specifically, the development of a suitable vibration measurement system and the construction of dynamic models of the system are the two goals aimed. For the new scanner design this work intend to propose, the conceptual design, the optimization of the most critical parts and the operation procedure that will allow the new device to reach the required performances imposed by the forthcoming LHC conditions.La producción de partículas de un acelerador se caracteriza por las especies de partículas aceleradas, por su número y energía. La tasa de partículas se determina a partir de la sección transversal de producción, una constante natural, y de un parámetro que depende del acelerador, la luminosidad. La luminosidad es proporcional al número de partículas por haz e inversamente proporcional a la dimensión transversal de los haces. La luminosidad aumenta con la densidad de partículas y por lo tanto también aumenta la probabilidad de interacciones entre los haces. Para optimizar la sección trasversal del haz, se utilizan monitores de perfil de haz. Diversos tipos de monitores pueden proporcionar mediciones del perfil transversal del haz (Escáneres de hilo, Monitores de luz de sincrotrón, Monitores de análisis de gas residual), sin embargo el escáner de hilo está considerado como el más preciso de todos ellos. Los escáneres de hilo miden el perfil del haz atravesándolo con un hilo muy delgado de manera intermitente. En los próximos años la luminosidad del Gran Colisionador de Hadrones (LHC) se incrementará de manera significativa, por lo que serán necesarios sistemas de medida de perfil de haz más precisos que lo actuales. Las nuevas características, requerirán velocidad de desplazamiento del hilo de hasta 20 ms-1 y una precisión en la medida de posición del hilo de tan solo unas micras. Los escáneres actuales no pueden alcanzar estos requerimientos ya que su precisión está limitada por el sistema de motorización, por el medidor angular de posición que está situado fuera del tanque de vacío y por las vibraciones del hilo, la cuales han sido identificadas como una de las mayores fuentes de error a la hora de conocer la posición real del hilo. Por todo esto, el desarrollo de un nuevo dispositivo cuyas características cumplan los nuevos requerimientos era necesario. Este trabajo de tesis tiene como objetivo proporcionar criterios adecuados para el diseño y operación de un nuevo escáner, con el fin de minimizar las incertidumbres en la posición del hilo. Para lograr estos objetivos, el entender las vibraciones del hilo en un sistema de este tipo es un objetivo primordial. De manera más específica el desarrollo de sistemas de medida de vibración adecuados y la construcción de modelos dinámicos del sistema son los dos objetivos concretos perseguidos por este trabajo. De cara al nuevo diseño, este trabajo pretende proponer un diseño conceptual así como definir los criterios para la optimización de las partes más críticas y establecer un procedimiento de operación que permita al nuevo dispositivo alcanzar los requerimientos impuestos por las futuras condiciones del LHC.Postprint (published version

    Domain-adaptive deep network compression

    Full text link
    Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer. We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing. We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone -- with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.Comment: Accepted at ICCV 201

    Higher accuracy approximate solution for oscillations of a mass attached to a stretched elastic wire by rational harmonic balance method

    Get PDF
    A second-order modified rational harmonic balance method is used for approximately solve the nonlinear differential equation that governs the oscillations of a system typified as a mass attached to a stretched elastic wire for which the restoring force for this oscillator has an irrational term with a parameter lambda that characterizes the system. A frequency-amplitude relation is constructed and this frequency is valid for the complete range of oscillation amplitudes A and parameter lambda, and excellent agreement of the approximate frequencies with the exact one is demonstrated and discussed. The discrepancy between the approximate frequency and the exact one never exceed 0.12%. This error corresponds to lambda = 1. while for lambda < 1 the relative error is much lower. For example, its value is lower than 0.017% for lambda = 0.5

    Application of electric fields to clean ultrafiltration membranes fouled with whey model solutions

    Full text link
    In this work, the effectiveness of electric fields to clean two ZrO2 TiO2 ultrafiltration (UF) membranes fouled with three types of whey model solutions was investigated. Membranes tested had different molecular weight cut-offs (MWCOs) (15 and 50 kDa). Whey model solutions consisted of aqueous solutions of bovine serum albumin (BSA) at 10 g/L, a mixture of BSA (10 g/L) and CaCl2 (1.65 g/L) and whey protein concentrate (WPC) (total protein content 45%) solutions at different concentrations (22.2, 33.3 and 150.0 g/L). The hydraulic cleaning efficiency (HCE) achieved by means of the application of the electric fields was evaluated as a function of the membrane MWCO and the operating conditions of the cleaning technique (applied potential, temperature of the cleaning solution and concentration of NaCl). The results demonstrated that the presence of NaCl favoured the removal of protein deposits on the membrane layer. On the other hand, the higher the temperature of the cleaning solution and the applied potential were, the higher HCE was achieved. Regarding the membrane MWCO, the permselective properties of the 15 kDa membrane were completely recovered after the cleaning procedure by electric field for all the feed fouling solutions tested, whereas this technique could not completely remove the protein deposits on the 50 kDa membrane when BSA solutions were used as feed.The authors of this work wish to gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation through the project CTM2010-20186 and the company MAGNETO Special Anodes B.V. for supplying the Ti-Ir electrode.Corbatón Báguena, MJ.; Alvarez Blanco, S.; Vincent Vela, MC.; Ortega Navarro, EM.; Pérez-Herranz, V. (2016). Application of electric fields to clean ultrafiltration membranes fouled with whey model solutions. Separation and Purification Technology. 159:92-99. https://doi.org/10.1016/j.seppur.2015.12.039S929915

    Micellar Iron Oxide Nanoparticles Coated with Anti-Tumor Glycosides

    Get PDF
    The synthesis procedure of nanoparticles based on thermal degradation produces organic solvent dispersible iron oxide nanoparticles (OA-IONP) with oleic acid coating and unique physicochemical properties of the core. Some glycosides with hydrophilic sugar moieties bound to oleyl hydrophobic chains have antimitotic activity on cancer cells but reduced in vivo applications because of the intrinsic low solubility in physiological media, and are prone to enzymatic hydrolysis. In this manuscript, we have synthetized and characterized OA-IONP-based micelles encapsulated within amphiphilic bioactive glycosides. The glycoside-coated IONP micelles were tested as Magnetic Resonance Imaging (MRI) contrast agents as well as antimitotics on rat glioma (C6) and human lung carcinoma (A549) cell lines. Micelle antimitotic activity was compared with the activity of the corresponding free glycosides. In general, all OA-IONP-based micellar formulations of these glycosides maintained their anti-tumor effects, and, in one case, showed an unusual therapeutic improvement. Finally, the micelles presented optimal relaxometric properties for their use as T2-weighed MRI contrast agents. Our results suggest that these bioactive hydrophilic nano-formulations are theranostic agents with synergistic properties obtained from two entities, which separately are not ready for in vivo applications, and strengthen the possibility of using biomolecules as both a coating for OA-IONP micellar stabilization and as drugs for therapy.This research was funded by FP7 Marie Curie Pulmonary imaging network (PINET) and Ministerio de Economia y Competitividad MAT2015-65184-C2-2-R; SAF2016-79593-P; SAF2017-84494-C2-1-R). This work was partially funded by Instituto de Salud Carlos III (DTS16/00059), CNIC (Centro Nacional de Investigaciones Cardiovasculares), and Comunidad de Madrid (B2017-BMD3731 and B2017-BMD3875). We thank Ligue contre le cancer, comite Charentes Maritimes which allows to free up some time to complete the redaction of this manuscript during a grant-not dedicated on this work-agreed to LIENSs, UMR CNRS 7266, La Rochelle.S

    The fracking debate in the media:The role of citizen platforms as sources of information

    Get PDF
    This article focusses on the analysis of the news coverage of fracking in the seven daily national Spanish newspapers in 2012. The results of the analysis of the 246 news items, based on the theory of framing, have demonstrated that the debate in the Spanish press also focusses on the concept of risks versus benefits. The environmental threat stands out as a result of the large number of actors, appearing as sources in the news items that are against the technique of fracking. Regional politicians and anti-fracking platforms lead the public debate, forming a negative opinion of this technique in Spai

    Propagation of nuclear data uncertainties in transmutation calculations using ACAB code

    Get PDF
    The assessment of the accuracy of parameters related to the reactor core performance (e.g, keff) and fuel cycle parameters (e.g. evolution/transmutation calculations) due to the uncertainties in the basic nuclear data (ND) is a critical issue. In performing this assessment, different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainty on the evaluation of the final responses. To perform this uncertainty evaluation the ENDF covariance files (variance/correlation in energy and cross-reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code

    Unique Organization of the Nuclear Envelope in the Post-natal Quiescent Neural Stem Cells

    Get PDF
    Neural stem cells (B1 astrocytes; NSCs) in the adult ventricular-subventricular-zone (V-SVZ) originate in the embryo. Surprisingly, recent work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to envelope-limited chromatin sheets (ELCS), reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymidine birth-dating, and Ara-C, we found that B1 cells with ELCS correspond to quiescent NSCs. ELCS begin forming in embryonic radial glia cells and represent a specific nuclear compartment containing particular epigenetic modifications and telomeres. These results reveal a unique nuclear compartment in quiescent NSCs, which is useful for identifying these primary progenitors and study their gene regulation

    Recommendations for MYRRHA relevant cross section data to the JEFF project

    Get PDF
    Within the framework of Work Package 10 of the EC FP7 CHANDA project, nuclear data of importance for the operation of MYRRHA, a lead-bismuth cooled accelerator driven reactor under development at SCK•CEN (BE), were studied. Based on data in the main nuclear data libraries, i.e. JEFF, JENDL, ENDF/B and BROND, and in the TENDL and CIELO libraries and on experimental data reported in the literature, recommendations to the JEFF project were made for several nuclides of interest to the MYRRHA reactor.JRC.G.2-Standards for Nuclear Safety, Security and Safeguard
    • …
    corecore