210 research outputs found

    Eugenics and Modern Biology: Critiques of Eugenics, 1910-1945

    Get PDF
    Eugenics in most western countries in the first four decades of the twentieth century was based on the idea that genes control most human phenotypic traits, everything from physical features such as polydactyly and eye color to physiological conditions such as the A-B-O blood groups to mental and personality traits such as “feeblemindedness”, alcoholism and pauperism. It assessing the development of the eugenics movement – its rise and decline between 1900 and 1950 – it is important to recognize that its naïve assumptions and often flawed methodologies were openly criticized at the time by scientists and non-scientists alike. This paper will present a brief overview of the critiques launched against eugenicists’ claims, particularly criticisms of the American school led by Charles B. Davenport. Davenport’s approach to eugenics will be contrasted to his British counterpart, Karl Pearson, founder and first editor of Annals of Eugenics. It was not the case that nearly everyone in the early twentieth century accepted eugenic conclusions as the latest, cutting-edge science. There are lessons from this historical approach for dealing with similar naïve claims about genetics today

    "I'd be just as happy with a cup of tea": Women's accounts of sex and affection in long-term heterosexual relationships

    Get PDF
    This article reports a feminist analysis of interview data with 10 British women, in which they discuss sex and affection in their heterosexual relationships. We explore the popular cultural notion that women lack sexual desire and are more concerned with love and affection. Feminist research has highlighted how in mainstream cultural discourses, men's sexuality has been positioned as superior to women's. Women's (lack of) desire is viewed as problematic and men's (active) 'need' for sex contrasts sharply with the construction of women as (passive) recipients of men's desire. The women in this research reported a lack of sexual desire, but positioned themselves as wanting to want sex, or 'desiring desire'. They expected penis-in-vagina intercourse to be an inherent part of (hetero)sex, and some participated in unwanted (consensual) sex in order to satisfy what they perceived as men's inherent 'need' for sex. We conclude by discussing the implications of our findings for feminist research and practice. © 2012 Elsevier Ltd

    Nanomedical Theranostics in Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. New diagnostic and therapeutic strategies are needed to mitigate this public health issue. Advances in nanotechnology have generated innovative strategies for diagnosis and therapy in a variety of diseases, foremost in cancer. Based on these studies, a novel concept referred to as nanomedical theranostics, or the combinatory application of nanoparticulate agents to allow diagnostic therapy, is being explored to enable image-guided, personalized, or targeted treatment. Preclinically, theranostics have been gradually applied to CVD with several interesting and encouraging findings. This article summarizes studies and challenges of nanotheranostic strategies in CVD. It also evaluates nanotheranostic strategies that may potentially be utilized to benefit patients

    Quantifying the Evolution of Vascular Barrier Disruption in Advanced Atherosclerosis with Semipermeant Nanoparticle Contrast Agents

    Get PDF
    Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment.To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques.Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7-14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine ((19)F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP.The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of endothelial permeability to nanoparticles is suggested

    Pre-nucleation clusters as solute precursors in crystallisation

    Get PDF
    Crystallisation is at the heart of various scientific disciplines, but still the understanding of the molecular mechanisms underlying phase separation and the formation of the first solid particles in aqueous solution is rather limited. In this review, classical nucleation theory, as well as established concepts of spinodal decomposition and liquid–liquid demixing, is introduced together with a description of the recently proposed pre-nucleation cluster pathway. The features of pre-nucleation clusters are presented and discussed in relation to recent modifications of the classical and established models for phase separation, together with a review of experimental work and computer simulations on the characteristics of pre-nucleation clusters of calcium phosphate, calcium carbonate, iron(oxy)(hydr)oxide, silica, and also amino acids as an example of small organic molecules. The role of pre-nucleation clusters as solute precursors in the emergence of a new phase is summarized, and the link between the chemical speciation of homogeneous solutions and the process of phase separation via pre-nucleation clusters is highlighted

    Magnetic resonance imaging (MRI) in rectal cancer: a comprehensive review

    Get PDF
    Magnetic resonance imaging (MRI) has established itself as the primary method for local staging in patients with rectal cancer. This is due to several factors, most importantly because of the ability to assess the status of circumferential resection margin. There are several newer developments being introduced continuously, such as diffusion-weighted imaging and imaging with 3 T. Assessment of loco-regional lymph nodes has also been investigated extensively using different approaches, but more work needs to be done. Finally, evaluation of tumours during or after preoperative treatment is becoming an everyday reality. All these new aspects prompt a review of the most recent advances and opinions. In this review, a comprehensive overview of the current status of MRI in the loco-regional assessment and management of rectal cancer is presented. The findings on MRI and their accuracy are reviewed based on the most up-to-date evidence. Optimisation of MRI acquisition and relevant regional anatomy are also presented, based on published literature and our own experience

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore