34 research outputs found

    Identification of key claudin genes associated with survival prognosis and diagnosis in colon cancer through integrated bioinformatic analysis

    Get PDF
    The claudin multigene family is associated with various aberrant physiological and cellular signaling pathways. However, the association of claudins with survival prognosis, signaling pathways, and diagnostic efficacy in colon cancer remains poorly understood.Methods: Through the effective utilization of various bioinformatics methods, including differential gene expression analysis, gene set enrichment analysis protein-protein interaction (PPI) network analysis, survival analysis, single sample gene set enrichment analysis (ssGSEA), mutational variance analysis, and identifying receiver operating characteristic curve of claudins in The Cancer Genome Atlas colon adenocarcinoma (COAD).Results: We found that: CLDN2, CLDN1, CLDN14, CLDN16, CLDN18, CLDN9, CLDN12, and CLDN6 are elevated in COAD. In contrast, the CLDN8, CLDN23, CLDN5, CLDN11, CLDN7, and CLDN15 are downregulated in COAD. By analyzing the public datasets GSE15781 and GSE50760 from NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/), we have confirmed that CLDN1, CLDN2, and CLDN14 are significantly upregulated and CLDN8 and CLDN23 are significantly downregulated in normal colon, colon adenocarcinoma tumor, and liver metastasis of colon adenocarcinoma tissues from human samples. Various claudins are mutated and found to be associated with diagnostic efficacy in COAD.Conclusion: The claudin gene family is associated with prognosis, immune regulation, signaling pathway regulations, and diagnosis of COAD. These findings may provide new molecular insight into claudins in the treatment of colon cancer

    Assessing Phototoxicity in a Mammalian Cell Line: How Low Levels of Blue Light Affect Motility in PC3 Cells.

    Get PDF
    Phototoxicity is a significant constraint for live cell fluorescence microscopy. Excessive excitation light intensities change the homeostasis of the observed cells. Erroneous and misleading conclusions may be the problematic consequence of observing such light-induced pathophysiology. In this study, we assess the effect of blue light, as commonly used for GFP and YFP excitation, on a motile mammalian cell line. Tracking PC3 cells at different light doses and intensities, we show how motility can be used to reliably assess subtle positive and negative effects of illumination. We further show that the effects are a factor of intensity rather than light dose. Mitotic delay was not a sensitive indicator of phototoxicity. For early detection of the effect of blue light, we analysed the expression of genes involved in oxidative stress. This study addresses the need for relatively simple and sensitive methods to establish a dose-response curve for phototoxicity in mammalian cell line models. We conclude with a working model for phototoxicity and recommendations for its assessment

    Mucormycosis co-infection in COVID-19 patients: An update

    Get PDF
    Mucormycosis (MCM) is a rare fungal disorder that has recently been increased in parallel with novel COVID-19 infection. MCM with COVID-19 is extremely lethal, particularly in immunocompromised individuals. The collection of available scientific information helps in the management of this co-infection, but still, the main question on COVID-19, whether it is occasional, participatory, concurrent, or coincidental needs to be addressed. Several case reports of these co-infections have been explained as causal associations, but the direct contribution in immunocompromised individuals remains to be explored completely. This review aims to provide an update that serves as a guide for the diagnosis and treatment of MCM patients’ co-infection with COVID-19. The initial report has suggested that COVID-19 patients might be susceptible to developing invasive fungal infections by different species, including MCM as a co-infection. In spite of this, co-infection has been explored only in severe cases with common triangles: diabetes, diabetes ketoacidosis, and corticosteroids. Pathogenic mechanisms in the aggressiveness of MCM infection involves the reduction of phagocytic activity, attainable quantities of ferritin attributed with transferrin in diabetic ketoacidosis, and fungal heme oxygenase, which enhances iron absorption for its metabolism. Therefore, severe COVID-19 cases are associated with increased risk factors of invasive fungal co-infections. In addition, COVID-19 infection leads to reduction in cluster of differentiation, especially CD4+ and CD8+ T cell counts, which may be highly implicated in fungal co-infections. Thus, the progress in MCM management is dependent on a different strategy, including reduction or stopping of implicit predisposing factors, early intake of active antifungal drugs at appropriate doses, and complete elimination via surgical debridement of infected tissues

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Integrated bioinformatics analyses identifying key transcriptomes correlated with prognosis and immune infiltrations in lung squamous cell carcinoma

    No full text
    Background: Lung Squamous Cell Carcinoma (LUSC) is a major subtype of lung malignancies and is associated with the cause of cancer-mediated mortality worldwide. However, identification of transcriptomic signatures associated with survival-prognosis and immunity of tumor remains lacking Method: The GSE2088, GSE6044, GSE19188, GSE21933, GSE33479, GSE33532, and GSE74706 were integrated for identifying differentially expressed genes (DEGs) with combined effect sizes. Also, the TCGA LUSC cohort was used for further analysis. A series of bioinformatics methods were utilized for conducting the whole study. Results: The 831 genes (such as DSG3, PKP1, DSC3, TPX2, and UBE2C) were found upregulated and the 731 genes (such as ABCA8, SELENBP1, FAM107A, and CACNA2D2) were downregulated in the LUSC. The functional enrichment analysis identifies the upregulated KEGG pathways, including cell cycle, DNA replication, base excision repair, proteasome, mismatch repair, and cellular senescence. Also, the key hub genes (such as EGFR, HRAS, JUN, CDH1, BRCA1, CASP3, RHOA, HDAC1, HIF1A, and CCNA2) were identified along with the eight gene modules that were significantly related to the protein–protein interaction (PPI). The clinical analyses identified that the overexpression group of CDH3, PLAU, PKP3, STIL, CALU, LOXL2, POSTN, DPP3, GALNT2, LOX, and ITPA are substantially associated with a poor survival prognosis and the downregulated group of IL18R1 showed a similar trend. Moreover, our investigation demonstrated that the survival-associated genes were correlated with the stromal and immune scores in LUSC, indicating that the survival-associated genes regulate tumor immunity. The survival-associated genes were genetically altered in 27% of LUSC patients and showed excellent diagnostic efficiency. Finally, the consistent expression level of CDH3, PLAU, PKP3, STIL, CALU, LOXL2, POSTN, DPP3, GALNT2, and ITPA were found in the TCGA LUSC cohort Conclusions: The identification of key transcriptomic signatures can be elucidated by the crucial mechanism of LUSC carcinogenesis

    Role of CD27 and SAMHD1 and their genetic susceptibility to COVID-19

    No full text
    SARS-CoV-2, which initiated the worldwide COVID-19 epidemic in 2019, has rapidly emerged and spread, resulting in significant public health challenges worldwide. The COVID-19 severity signs and their association with specific genes have been investigated to better comprehend this phenomenon. In this study, several genes were investigated to see whether they correspond with COVID-19 sickness severity. This research aims to determine and evaluate certain gene expression levels associated with the immune system, as these genes were reported to play important roles in immune control during the COVID-19 outbreak. We analyzed two immunity-linked genes: CD27 and SAMHD1 in COVID-19 patients’ samples using RT-PCR, compared them to the samples from recovered, immunized, and healthy individuals. These data were examined to determine the potential relationships between clinical patterns, illness severity, and progression, and SARS-CoV-2 infection immunology.We observed that CD27 gene expression was higher in COVID-19 vaccinated and control groups, but lower in active and recovered COVID-19 patients. On the other hand, SAMHD1 gene expression was elevated in infected and recovered COVID-19 groups. According to our study, the proteins CD27 and SAMHD1 are essential for controlling the immunological response to COVID-19. Changes in their expression levels could increase the susceptibility of patients to severe complications associated with the disease. Therefore, the gene expression level of these proteins could serve as viable prognostic markers for COVID-19

    Genotype–Phenotype Analysis of Children with Epilepsy Referred for Whole-Exome Sequencing at a Tertiary Care University Hospital

    No full text
    Background: Despite the high consanguinity rates, data on genetic epilepsy in Saudi Arabia is limited. The objective of the current study was to characterize genetic mutations associated with epilepsy in pediatric patients and describe their phenotypic presentations. Methods: A retrospective chart review was conducted among children presented with epilepsy in one center in Saudi Arabia between 2015 and 2018. Only those who had undergone genetic testing were included. Results: A total of 45 patients had positive whole-exome sequencing (WES) genetic testing with 37 mutations. Six mutations (SCN1A, DENND5A, KCNQ2, ACY1, SCN2A, and PCDH19) were repeated in 15 patients, with largely heterogeneous phenotypic presentations in patients with the same mutation. Several mutations are reported for the first time in Saudi Arabia. The median age at epilepsy onset was four months. Consanguineous parents and family history of epilepsy were frequent (31.8% and 33.3%, respectively). Developmental delay (44.4%), cognitive delay (42.2%), language delay (40.0%), behavioral features (28.9%), and microcephaly (20.0%) were frequent presentations. At initial diagnosis, 68.9% of EEG and 48.9% of brain MRI were abnormal. The most currently used antiseizure medications (ASMs) were levetiracetam (48.9%), topiramate (28.9%), and valproic acid (20.0%). Approximately 60% of the patients were controlled with (47.6%) or without (11.9%) ASMs, and three (7.1%) patients died. Conclusions: Multiple mutations among children with epilepsy are reported in one hospital in Saudi Arabia, with the majority reported for the first time. The current findings highlight the importance of doing genetic testing for the evaluation of childhood epilepsy
    corecore