41 research outputs found

    Service differentiation in OFDM-Based IEEE 802.16 networks

    Get PDF
    IEEE 802.16 network is widely viewed as a strong candidate solution for broadband wireless access systems. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, bandwidth request scheme can be used to indicate and request bandwidth demands to the base station for different services. Due to the diverse QoS requirements of the applications, service differentiation (SD) is desirable for the bandwidth request scheme. In this paper, we propose several SD approaches. The approaches are based on the contention-based bandwidth request scheme and achieved by the means of assigning different channel access parameters and/or bandwidth allocation priorities to different services. Additionally, we propose effective analytical model to study the impacts of the SD approaches, which can be used for the configuration and optimization of the SD services. It is observed from simulations that the analytical model has high accuracy. Service can be efficiently differentiated with initial backoff window in terms of throughput and channel access delay. Moreover, the service differentiation can be improved if combined with the bandwidth allocation priority approach without adverse impacts on the overall system throughput

    One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase

    Get PDF
    N-acetylneuraminic acid (Neu5Ac) possesses the ability to promote mental health and enhance immunity and is widely used in both medicine and food fields as a supplement. Enzymatic production of Neu5Ac using N-acetyl-D-glucosamine (GlcNAc) as substrate was significant. However, the high-cost GlcNAc limited its development. In this study, an in vitro multi-enzyme catalysis was built to produce Neu5Ac using affordable chitin as substrate. Firstly, exochitinase SmChiA from Serratia proteamaculans and N-acetylglucosaminosidase CmNAGase from Chitinolyticbacter meiyuanensis SYBC-H1 were screened and combined to produce GlcNAc, effectively. Then, the chitinase was cascaded with N-acetylglucosamine-2-epimerase (AGE) and N-neuraminic acid aldolase (NanA) to produce Neu5Ac; the optimal conditions of the multi-enzyme catalysis system were 37°C and pH 8.5, the ratio of AGE to NanA (1:4) and addition of pyruvate (70 mM), respectively. Finally, 9.2 g/L Neu5Ac could be obtained from 20 g/L chitin within 24 h along with two supplementations with pyruvate. This work will lay a good foundation for the production of Neu5Ac from cheap chitin resources

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports

    Whole-cell catalyze L-dopa to dopamine via co-expression of transport protein AroP in Escherichia coli

    No full text
    Abstract Dopamine is high-value compound of pharmaceutical interest, but its industrial scale production mostly focuses on chemical synthesis, possessing environment pollution. Bio-manufacturing has caused much attention for its environmental characteristic. Resting cells were employed to as biocatalysts with extraordinary advantages like offering stable surroundings, the inherent presence of expensive cofactors. In this study, whole-cell bioconversion was employed to convert dopa to dopamine. To increase the titer and yield of dopamine production through whole-cell catalysis, three kinds of aromatic amino acid transport protein, AroP, PheP and TyrP, were selected to be co-expressed. The effects of the concentration of L-dopa, pyridoxal-5’- phosphate (PLP), reaction temperature and pH were characterized for improvement of bioconversion. Under optimal conditions, dopamine titer reached 1.44 g/L with molar yield of 46.3%, which is 6.62 times than that of initial conditions. The catalysis productivity of recombinant E. coli co-expressed L-dopa decarboxylase(DDC) and AroP was further enhanced by repeated cell recycling, which maintained over 50% of its initial ability with eight consecutive catalyses. This study was the first to successfully bioconversion of dopamine by whole-cell catalysis. This research provided reference for whole-cell catalysis which is hindered by cell membrane

    Molecular characterization of a novel chitinase CmChi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-d-glucosamine production

    No full text
    Abstract Background N-acetyl-d-glucosamine (GlcNAc) possesses many bioactivities that have been used widely in many fields. The enzymatic production of GlcNAc is eco-friendly, with high yields and a mild production process compared with the traditional chemical process. Therefore, it is crucial to discover a better chitinase for GlcNAc production from chitin. Results A novel chitinase gene (Cmchi1) cloned from Chitinolyticbacter meiyuanensis SYBC-H1 and expressed in Escherichia coli BL21(DE3) cells. The recombinant enzyme (CmChi1) contains a glycosyl hydrolase family 18 catalytic module that shows low identity (12–27%) with the corresponding domain of the well-characterized chitinases. CmChi1 was purified with a recovery yield of 89% by colloidal chitin affinity chromatography, whereupon it had a specific activity of up to 15.3 U/mg. CmChi1 had an approximate molecular mass of 70 kDa after the sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its optimum activity for colloidal chitin (CC) hydrolysis occurred at pH 5.2 and 50 °C. Furthermore, CmChi1 exhibited k cat/K m values of 7.8 ± 0.11 mL/s/mg and 239.1 ± 2.6 mL/s/μmol toward CC and 4-nitrophenol N,N′-diacetyl-β-d-chitobioside [p-NP-(GlcNAc)2], respectively. Analysis of the hydrolysis products revealed that CmChi1 exhibits exo-acting, endo-acting and N-acetyl-β-d-glucosaminidase activities toward N-acetyl chitooligosaccharides (N-acetyl CHOS) and CC substrates, behavior that makes it different from typical reported chitinases. As a result, GlcNAc could be produced by hydrolyzing CC using recombinant CmChi1 alone with a yield of nearly 100% and separated simply from the hydrolysate with a high purity of 98%. Conclusion The hydrolytic properties and good environmental adaptions indicate that CmChi1 has excellent potential in commercial GlcNAc production. This is the first report on exo-acting, endo-acting and N-acetyl-β-d-glucosaminidase activities from Chitinolyticbacter species

    Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35

    No full text
    Abstract Background The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35. Results The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2–4 µm—when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C–C and C–O–C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC–MS analysis. Through genome sequencing and annotation, and from GC–MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria. Conclusion Elucidation of the β-aryl ether cleavage pathway in the strain SP-35 indicates that the β-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future

    Surfactant enhanced l

    No full text

    Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei

    No full text
    A metagenomic fosmid library containing 1 x 10(5) clones was constructed from a biogas digester fed with pig ordure and rice straw. In total, 121 clones with activity of 4-methylumbelliferyl-cellobiosidase were screened from the metagenomic library. A novel GH5 cellulase gene exo2b was identified from a sequenced clone EXO02C10 and expressed in Escherichia coli BL21. The corresponding recombinant Exo2b protein showed high specific activity toward both carboxymethylcellulose (CMC; 260 U/mg protein) and beta-d-glucan from barley (849 U/mg), with an optimal pH and temperature of 7.5 and 58 A degrees C, respectively. Exo2b showed stable activity at a wide pH range from 5.5 to 9.0 and was highly thermostable at 60 A degrees C in the presence of 60 mM cysteine. Residual activity was maintained at nearly 100% when Exo2b was incubated at 60 A degrees C for 15 h. A thin-layer chromatography analysis of the hydrolysis products confirmed that Exo2b was an endo-beta-1,4-glucanase and it could also produce oligosaccharide smaller than cellotetraose. The fragment encoding the Exo2b catalytic domain was then fused with the cbh1 gene from Trichoderma reesei, and the fused gene was successfully expressed in T. reesei Rut-C30. Compared to that of the parent strain, the filter paper activity and CMCase activity of the secreted proteins of a selected transformant A1 increased by 24% and 18%, respectively. Besides, the glucose concentration from the hydrolysis of pretreated corn stover by the A1 secreted proteins increased by 19.8%. The present study demonstrated the potential application of metagenome originated cellulase genes to modify cellulase producing fungi

    Correction to: Construction of cell factory capable of efficiently converting l‑tryptophan into 5‑hydroxytryptamine

    No full text
    BACKGROUND: l-Tryptophan (l-Trp) derivatives such as 5-hydroxytryptophan (5-HTP) and 5-hydroxytryptamine (5-HT), N-Acetyl-5-hydroxytryptamine and melatonin are important molecules with pharmaceutical interest. Among, 5-HT is an inhibitory neurotransmitter with proven benefits for treating the symptoms of depression. At present, 5-HT depends on plant extraction and chemical synthesis, which limits its mass production and causes environmental problems. Therefore, it is necessary to develop an efficient, green and sustainable biosynthesis method to produce 5-HT. RESULTS: Here we propose a one-pot production of 5-HT from l-Trp via two enzyme cascades for the first time. First, a chassis cell that can convert l-Trp into 5-HTP was constructed by heterologous expression of tryptophan hydroxylase from Schistosoma mansoni (SmTPH) and an artificial endogenous tetrahydrobiopterin (BH(4)) module. Then, dopa decarboxylase from Harminia axyridis (HaDDC), which can specifically catalyse 5-HTP to 5-HT, was used for 5-HT production. The cell factory, E. coli BL21(DE3)△tnaA/BH(4)/HaDDC-SmTPH, which contains SmTPH and HaDDC, was constructed for 5-HT synthesis. The highest concentration of 5-HT reached 414.5 ± 1.6 mg/L (with conversion rate of 25.9 mol%) at the optimal conditions (substrate concentration,2 g/L; induced temperature, 25℃; IPTG concentration, 0.5 mM; catalysis temperature, 30℃; catalysis time, 72 h). CONCLUSIONS: This protocol provided an efficient one-pot method for converting. l-Trp into 5-HT production, which opens up possibilities for the practical biosynthesis of natural 5-HT at an industrial scale. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-022-01745-0
    corecore