1,132 research outputs found

    Ion Beam irradiation of copper nitride: electronic vs elastic-collision mechanism

    Full text link
    Copper nitride is a metastable material which results very attractive because of their potential to be used in functional device. Cu3 N easily decomposes into Cu and N2 by annealing [1] or irradiation (electron, ions, laser) [2, 3]. Previous studies carried out in N-rich Cu3 N films irradiated with Cu at 42MeV evidence a very efficient sputtering of N whose yield (5×10 3 atom/ion), for a film with a thickness of just 100 nm, suggest that the origin of the sputtering has an electronic nature. This N depletion was observed to be responsible for new phase formation ( Cu2 O) and pure Cu [4

    Compositional, structural and morphological modifications of N-rich Cu3N films induced by irradiation with Cu at 42 MeV

    Get PDF
    N-rich Cu3N films were irradiated with Cu at 42 MeV in the fluences range from 4 × 1011 to 1 × 1014 cm−2. The radiation-induced changes in the chemical composition, structural phases, surface morphology and optical properties have been characterized as a function of ion fluence, substrate temperature and angle of incidence of the incoming ion by means of ion-beam analysis (IBA), x-ray diffraction, atomic force microscopy, profilometry and Fourier transform infrared spectroscopy techniques. IBA methods reveal a very efficient sputtering of N whose yield (5 × 103 atom/ion) is almost independent of substrate temperature (RT-300 °C) but slightly depends on the incidence angle of the incoming ion. The Cu content remains essentially constant within the investigated fluence range. All data suggest an electronic mechanism to be responsible for the N depletion. The release of nitrogen and the formation of Cu2O and metallic Cu are discussed on the basis of existing models

    Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall

    Full text link
    Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall

    Continuum theory of vacancy-mediated diffusion

    Full text link
    We present and solve a continuum theory of vacancy-mediated diffusion (as evidenced, for example, in the vacancy driven motion of tracers in crystals). Results are obtained for all spatial dimensions, and reveal the strongly non-gaussian nature of the tracer fluctuations. In integer dimensions, our results are in complete agreement with those from previous exact lattice calculations. We also extend our model to describe the vacancy-driven fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review

    Sampling the diffusion paths of a neutral vacancy in Silicon with quantum mechanical calculations

    Full text link
    We report a first-principles study of vacancy-induced self-diffusion in crystalline silicon. Starting form a fully relaxed configuration with a neutral vacancy, we proceed to search for local diffusion paths. The diffusion of the vacancy proceeds by hops to first nearest neighbor with an energy barrier of 0.40 eV in agreement with experimental results. Competing mechanisms are identified, like the reorientation, and the recombination of dangling bonds by Wooten-Winer-Weaire process.Comment: 10 pages, 5 figures, accepted for publication in Pysical review

    Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at root s=8 TeV

    Get PDF
    The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb(-1)for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F-0), left-handed (F-L), or right-handed (F-R) polarizations. The resulting combined measurements of the polarization fractions are F-0= 0.693 +/- 0.014 and F-L= 0.315 +/- 0.011. The fractionF(R)is calculated from the unitarity constraint to be F-R=-0.008 +/- 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F-0(F-L) with respect to the most precise single measurement. A limit on anomalous right-handed vector (V-R), and left- and right-handed tensor (g(L), g(R)) tWb couplings is set while fixing all others to their standard model values. The allowed regions are [-0.11,0.16] for V-R, [-0.08,0.05] for g(L), and [-0.04,0.02] for g(R), at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived.Peer reviewe

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.
    corecore