64 research outputs found

    Exploring vertical and horizontal leadership in projects: A comparison of Indian and Australian contexts

    Full text link
    Project-based organisational forms are becoming more and more prevalent in many industries, and leadership influences projects' success ultimately impacting the organisational performance. Two types of leadership styles have been explored: vertical and horizontal. This study aims to identify the nature and balance of vertical and horizontal leadership in projects to allow project managers to consciously poly these approaches in different situations. A case study-based approach is adopted wherein, two case studies from India and three case studies from Australia are included . A comparative study of leadership styles is performed to find the best contextual fit for leadership styles. The findings reveal that that national cultural is not a major factor in influencing project leadership. Rather, organisational culture and a shared understanding on leadership practices is what influences whether vertical or horizontal leadership will be more prevalent. Senior leaders' initiatives to create and support a culture of sharing ideasand decisions, backed by project manager's approach enable effective balance between horizontal and vertical leadership. Horizontal leadership is further by regular meetings and social interactions. Prevalence of horizontal leaderships is demonstrated in technical decisions, as team members have the best expertise to address technical issues. In contrast, strategic decisions are normally discussed with the project manager and often escalated to senior leaders for decisions

    Conjoint bicondylar Hoffa fracture in a child: a rare variant treated by minimally invasive approach

    Get PDF
    A case of conjoint Hoffa-type fracture in a child is presented. Hoffa fracture, i.e., coronal slice fracture of the condyles of the femur, is rare in adults and even rarer in the pediatric population. To date, no case of conjoint bicondylar Hoffa fracture has been reported in the literature. The presented case was successfully treated by arthroscopically assisted internal fixation

    Maternal Undernutrition Significantly Impacts Ovarian Follicle Number and Increases Ovarian Oxidative Stress in Adult Rat Offspring

    Get PDF
    BACKGROUND: We have shown recently that maternal undernutrition (UN) advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS: We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of maternal UN potentially contributing to premature ovarian ageing in offspring

    Recent advances in hydrothermal carbonisation:from tailored carbon materials and biochemicals to applications and bioenergy

    Get PDF
    Introduced in the literature in 1913 by Bergius, who at the time was studying biomass coalification, hydrothermal carbonisation, as many other technologies based on renewables, was forgotten during the "industrial revolution". It was rediscovered back in 2005, on the one hand, to follow the trend set by Bergius of biomass to coal conversion for decentralised energy generation, and on the other hand as a novel green method to prepare advanced carbon materials and chemicals from biomass in water, at mild temperature, for energy storage and conversion and environmental protection. In this review, we will present an overview on the latest trends in hydrothermal carbonisation including biomass to bioenergy conversion, upgrading of hydrothermal carbons to fuels over heterogeneous catalysts, advanced carbon materials and their applications in batteries, electrocatalysis and heterogeneous catalysis and finally an analysis of the chemicals in the liquid phase as well as a new family of fluorescent nanomaterials formed at the interface between the liquid and solid phases, known as hydrothermal carbon nanodots

    Ambient-temperature waterborne polymer/rGO nanocomposite films: effect of rGO distribution on electrical conductivity

    No full text
    Copyright © 2019 American Chemical Society. Electrically conductive polymer/rGO (reduced graphene oxide) films based on styrene and n-butyl acrylate are prepared by a variety of aqueous latex based routes involving ambient temperature film formation. Techniques based on miniemulsion polymerization using GO as surfactant and "physical mixing" approaches (i.e., mixing an aqueous polymer latex with an aqueous GO dispersion) are employed, followed by heat treatment of the films to convert GO to rGO. The distribution of GO sheets and the electrical conductivity depend strongly on the preparation method, with electrical conductivities in the range 9 × 10-4 to 3.4 × 102 S/m. Higher electrical conductivities are obtained using physical mixing compared to miniemulsion polymerization, which is attributed to the former providing a higher level of self-alignment of rGO into larger linear domains. The present results illustrate how the distribution of GO sheets within these hybrid materials can to some extent be controlled by judicious choice of preparation method, thereby providing an attractive means of nanoengineering for specific potential applications
    corecore