652 research outputs found
Cortical folding in Broca's area relates to obstetric complications in schizophrenia patients and healthy controls
Background The increased occurrence of obstetric complications (OCs) in patients with schizophrenia suggests that alterations in neurodevelopment may be of importance to the aetiology of the illness. Abnormal cortical folding may reflect subtle deviation from normal neurodevelopment during the foetal or neonatal period. In the present study, we hypothesized that OCs would be related to cortical folding abnormalities in schizophrenia patients corresponding to areas where patients with schizophrenia display altered cortical folding when compared with healthy controls. Method In total, 54 schizophrenia patients and 54 healthy control subjects underwent clinical examination and magnetic resonance image scanning on a 1.5 T scanner. Information on OCs was collected from original birth records. An automated algorithm was used to calculate a three-dimensional local gyrification index (lGI) at numerous points across the cortical mantle. Results In both schizophrenia patients and healthy controls, an increasing number of OCs was significantly related to lower lGI in the left pars triangularis (p<0.0005) in Broca's area. For five other anatomical cortical parcellations in the left hemisphere, a similar trend was demonstrated. No significant relationships between OCs and lGI were found in the right hemisphere and there were no significant case-control differences in lGI. Conclusions The reduced cortical folding in the left pars triangularis, associated with OCs in both patients and control subjects suggests that the cortical effect of OCs is caused by factors shared by schizophrenia patients and healthy controls rather than factors related to schizophrenia alon
Obstetric complications and intelligence in patients on the schizophrenia-bipolar spectrum and healthy participants
Background Whether severe obstetric complications (OCs), which harm neural function in offspring, contribute to impaired cognition found in psychiatric disorders is currently unknown. Here, we sought to evaluate how a history of severe OCs is associated with cognitive functioning, indicated by Intelligence Quotient (IQ). Methods We evaluated the associations of a history of OCs and IQ in 622 healthy controls (HC) and 870 patients on the schizophrenia (SCZ) – bipolar disorder (BIP) spectrum from the ongoing Thematically Organized Psychosis study cohort, Oslo, Norway. Participants underwent assessments using the NART (premorbid IQ) and the WASI (current IQ). Information about OCs was obtained from the Medical Birth Registry of Norway. Multiple linear regression models were used for analysis. Results Severe OCs were equally common across groups. SCZ patients with OCs had lower performances on both premorbid and current IQ measures, compared to those without OCs. However, having experienced more than one co-occurring severe OC was associated with lower current IQ in all groups. Conclusions Severe OCs were associated with lower IQ in the SCZ group and in the BIP and HC groups, but only if they had experienced more than one severe OC. Low IQ might be a neurodevelopmental marker for SCZ; wherein, severe OCs influence cognitive abilities and increase the risk of developing SCZ. Considering OCs as a variable of neurodevelopmental risk for severe mental illness may promote the development of neuroprotective interventions, improve outcome in vulnerable newborns and advance our ability to make clinical prognoses
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Increased ventral striatal volume in college-aged binge drinkers
BACKGROUND
Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala.
METHOD
T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data.
RESULTS
Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups.
CONCLUSIONS
Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
Previous hospital admissions and disease severity predict the use of antipsychotic combination treatment in patients with schizophrenia
<p>Abstract</p> <p>Background</p> <p>Although not recommended in treatment guidelines, previous studies have shown a frequent use of more than one antipsychotic agent among patients with schizophrenia. The main aims of the present study were to explore the antipsychotic treatment regimen among patients with schizophrenia in a catchment area-based sample and to investigate clinical characteristics associated with antipsychotic combination treatment.</p> <p>Methods</p> <p>The study included 329 patients diagnosed with schizophrenia using antipsychotic medication. Patients were recruited from all psychiatric hospitals in Oslo. Diagnoses were obtained by use of the Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I). Additionally, Global Assessment of Functioning (GAF), Positive and Negative Syndrome Scale (PANSS) and number of hospitalisations and pharmacological treatment were assessed.</p> <p>Results</p> <p>Multiple hospital admissions, low GAF scores and high PANSS scores, were significantly associated with the prescription of combination treatment with two or more antipsychotics. The use of combination treatment increased significantly from the second hospital admission. Combination therapy was not significantly associated with age or gender. Regression models confirmed that an increasing number of hospital admission was the strongest predictor of the use of two or more antipsychotics.</p> <p>Conclusions</p> <p>Previous hospital admissions and disease severity measured by high PANSS scores and low GAF scores, predict the use of antipsychotic combination treatment in patients with schizophrenia. Future studies should further explore the use of antipsychotic drug treatment in clinical practice and partly based on such data establish more robust treatment guidelines for patients with persistently high symptom load.</p
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
Healthy Adolescent Performance With Standardized Scoring Tables for the MATRICS Consensus Cognitive Battery: A Multisite Study.
The aim of this study was to develop standardized scores and scoring tables for test performance in healthy adolescents for the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) for each year from 11 to 19 years of age, by sex, with T scores and percentile ranks.A total of 502 healthy participants (aged 11-19 years) from 7 cohorts from Ireland, Norway, Sweden, and United States, were included in this multisite study. Regression-predicted means for the MCCB tests, except the social cognition subtest, were calculated using the MCCB test scores as outcome variables and age, age2, sex, age × sex as predictors. The regression-predicted means for each combination of age and sex were added with the residuals from the entire cohort to yield the expected distribution of that group. Age effects were examined using regression models with age and age2 as predictors. Sex differences were examined using Student\u27s t-tests.Significant positive age effects were found for all tests, except for the Brief Visuospatial Memory Test, revised (BVMT-R; measure of visual learning). Females performed significantly better than males on BACS Symbol coding (measure of speed of processing) and BVMT-R, while males performed significantly better than females on NAB Mazes (measure of reasoning and problem solving). Based on the regression-predicted distributions of scores, 19 standardized scoring tables for each test and domain were created.With the results from this study, we have developed an accessible standardized data set of healthy adolescent test performance for the MCCB
Lower plasma total tau in adolescent psychosis: Involvement of the orbitofrontal cortex
Schizophrenia is thought to be a neurodevelopmental disorder with neuronal migration, differentiation and maturation disturbances. Tau is a microtubule-associated protein with a crucial role in these processes. Lower circulating tau levels have been reported in adults with schizophrenia, but this association has not been investigated in adolescent psychosis. We aimed to test the hypotheses that a) adolescents with early-onset psychosis (EOP; age of onset <18 years) display lower plasma tau concentrations compared to healthy controls, and b) among patients with psychosis, tau levels are linked to structural brain measures associated with the microtubule-associated tau (MAPT) gene and psychosis. We included 37 adolescent patients with EOP (mean age 16.4 years) and 59 adolescent healthy controls (mean age 16.2 years). We investigated putative patient-control differences in plasma total tau concentrations measured by a Single molecule array (Simoa) immunoassay. We explored the correlations between tau and selected structural brain measures based on T1-weighted MRI scans processed in FreeSurfer v6.0. We found significantly lower plasma tau concentrations in patients compared to healthy controls (p = 0.017, partial eta-squared = 0.061). Tau was not associated with antipsychotic use or the antipsychotic dosage. Among patients but not healthy controls, tau levels were positively correlated with the cortical orbitofrontal surface area (p = 0.013, R-squared = 0.24). The results are suggestive of a tau-related neurodevelopmental disturbance in adolescent psychosis
Linking menopause-related factors, history of depression, APOE ε4, and proxies of biological aging in the UK biobank cohort.
In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health
- …
