307 research outputs found
Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap
A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We
discuss the alignment algorithm and an experiment-independent implementation
including outlier rejection and treatment of weakly determined parameters.
Using this implementation, the algorithm has been applied to data recorded with
one CMS silicon tracker endcap. Results are compared to both photogrammetry
measurements and data obtained from a dedicated hardware alignment system, and
good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00
Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications
Looking for magnetic monopoles at LHC with diphoton events
Magnetic monopoles have been a subject of interest since Dirac established
the relation between the existence of monopoles and charge quantization. The
intense experimental search carried thus far has not met with success. The
Large Hadron Collider is reaching energies never achieved before allowing the
search for exotic particles in the TeV mass range. In a continuing effort to
discover these rare particles we propose here other ways to detect them. We
study the observability of monopoles and monopolium, a monopole-antimonopole
bound state, at the Large Hadron Collider in the channel for
monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal
machine to discover monopoles with masses below 1 TeV at present running
energies and with 5 fb of integrated luminosity.Comment: This manuscript contains information appeared in Looking for magnetic
monopoles at LHC, arXiv:1104.0218 [hep-ph] and Monopolium detection at the
LHC.,arXiv:1107.3684 [hep-ph] by the same authors, rewritten for joint
publication in The European Physica Journal Plus. 26 pages, 22 figure
Top Quark Physics at the LHC: A Review of the First Two Years
This review summarizes the highlights in the area of top quark physics
obtained with the two general purpose detectors ATLAS and CMS during the first
two years of operation of the Large Hadron Collider LHC. It covers the 2010 and
2011 data taking periods, where the LHC provided pp collisions at a
center-of-mass energy of sqrt(s)=7 TeV. Measurements are presented of the total
and differential top quark pair production cross section in many different
channels, the top quark mass and various other properties of the top quark and
its interactions, for instance the charge asymmetry. Measurements of single top
quark production and various searches for new physics involving top quarks are
also discussed. The already very precise experimental data are in good
agreement with the standard model.Comment: 107 pages, invited review for Int. J. Mod. Phys. A, v2 is identical
to v1 except for the addition of the table of content
Measurements of the Production, Decay and Properties of the Top Quark: A Review
With the full Tevatron Run II and early LHC data samples, the opportunity for
furthering our understanding of the properties of the top quark has never been
more promising. Although the current knowledge of the top quark comes largely
from Tevatron measurements, the experiments at the LHC are poised to probe
top-quark production and decay in unprecedented regimes. Although no current
top quark measurements conclusively contradict predictions from the standard
model, the precision of most measurements remains statistically limited.
Additionally, some measurements, most notably the forward-backward asymmetry in
top quark pair production, show tantalizing hints of beyond-the-Standard-Model
dynamics. The top quark sample is growing rapidly at the LHC, with initial
results now public. This review examines the current status of top quark
measurements in the particular light of searching for evidence of new physics,
either through direct searches for beyond the standard model phenomena or
indirectly via precise measurements of standard model top quark properties
Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction
The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450–1850 CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r = 0.29, p < 0.01) and centennial timescales (r = 0.6, p < 0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms
Jet Dipolarity: Top Tagging with Color Flow
A new jet observable, dipolarity, is introduced that can distinguish whether
a pair of subjets arises from a color singlet source. This observable is
incorporated into the HEPTopTagger and is shown to improve discrimination
between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
- …
