85 research outputs found

    Soil bacterial and fungal communities across a pH gradient in an arable soil

    Get PDF
    Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth. The ISME Journal (2010) 4, 1340-1351; doi: 10.1038/ismej.2010.58; published online 6 May 2010&nbsp

    Biochar has no effect on soil respiration across Chinese agricultural soils

    Get PDF
    This work was supported by NSFC (41371298 and 41371300), Ministry of Science and Technology (2013GB23600666 and 2013BAD11B00), and Ministry of Education of China (20120097130003). The international cooperation was funded under a “111” project by the State Agency of Foreign Expert Affairs of China and jointly supported under a grant for Priority Disciplines in Higher Education by the Department of Education, Jiangsu Province, China; The work was also a contribution to the cooperation project of “Estimates of Future Agricultural GHG Emissions and Mitigation in China” under the UK-China Sustainable Agriculture Innovation Network (SAIN). Pete Smith contributed to this work under a UK BBSRC China Partnership Award. The authors are grateful to Yuming Liu, Bin Zhang, Xiao Li, Gang Wu, Jinjin Qu and Yinxin Ye and Dongqi Liu for their contribution to field experiments, and to Rongjun Bian and Qaiser Hussain for their participation in discussions of the data analysis and interpretation, and to Xinyan Yu and Jiafang Wang for their assistance in lab works.Peer reviewedPostprin

    Is soluble protein mineralisation and protease activity in soil regulated by supply or demand?

    Get PDF
    Protein represents a major input of organic matter to soil and is an important source of carbon (C) and nitrogen (N) for microorganisms. Therefore, determining which soil properties influence protein mineralisation in soil is key to understanding and modelling soil C and N cycling. However, the effect of different soil properties on protein mineralisation, and especially the interactions between soil properties, are poorly understood. We investigated how topsoil and subsoil properties affect protein mineralisation along a grassland altitudinal (catena) sequence that contained a gradient in soil type and primary productivity. We devised a schematic diagram to test the key edaphic factors that may influence protein mineralisation in soil (e.g. pH, microbial biomass, inorganic and organic N availability, enzyme activity and sorption). We then measured the mineralisation rate of 14C-labelled soluble plant-derived protein and amino acids in soil over a two-month period. Correlation analysis was used to determine the associations between rates of protein mineralisation and soil properties. Contrary to expectation, we found that protein mineralisation rate was nearly as fast as for amino acid turnover. We ascribe this rapid protein turnover to the low levels of protein used here, its soluble nature, a high degree of functional redundancy in the microbial community and microbial enzyme adaptation to their ecological niche. Unlike other key soil N processes (e.g. nitrification, denitrification), protease activity was not regulated by a small range of factors, but rather appeared to be affected by a wide range of interacting factors whose importance was dependent on altitude and soil depth [e.g. above-ground net primary productivity (NPP), soil pH, nitrate, cation exchange capacity (CEC), C:N ratio]. Based on our results, we hypothesise that differences in soil N cycling and the generation of ammonium are more related to the rate of protein supply rather than limitations in protease activity and protein turnover per se

    SOIL QUALITY IN RELATION TO FOREST CONVERSION TO PERENNIAL OR ANNUAL CROPPING IN SOUTHERN BRAZIL

    Get PDF
    Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrĂłfico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high

    Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review

    Get PDF
    The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry
    • 

    corecore