60 research outputs found

    Hippocampal representation of threat features and behavior in a human approach-avoidance conflict anxiety task

    Get PDF
    Decisions under threat are crucial to survival and require integration of distinct situational features such as threat probability and magnitude. Recent evidence from human lesion and neuroimaging studies implicated anterior hippocampus (aHC) and amygdala in approach/avoidance decisions under threat, and linked their integrity to cautious behavior. Here we sought to elucidate how threat dimensions and behavior are represented in these structures. Twenty human participants (11 female) completed an approach-avoidance conflict task during high-resolution functional MRI. Participants could gather tokens under threat of capture by a virtual predator, which would lead to token loss. Threat probability (predator wake-up rate) and magnitude (amount of token loss) varied on each trial. To disentangle effects of threat features, and ensuing behavior, we performed a multifold parametric analysis. We found that high threat probability and magnitude related to BOLD signal in left anterior hippocampus/entorhinal cortex. However BOLD signal in this region was better explained by avoidance behavior than by these threat features. A priori region-of-interest analysis confirmed the relation of anterior hippocampus BOLD response with avoidance. Exploratory subfield analysis revealed that this relation was specific to anterior CA2/3 but not CA1. Left lateral amygdala responded to low and high, but not intermediate threat probability. Our results suggest that anterior hippocampus BOLD signal is better explained by avoidance behavior than by threat features in approach-avoidance conflict. Rather than representing threat features in a monotonic manner, it appears that anterior hippocampus may compute approach/avoidance decisions based on integration of situational threat features represented in other neural structures

    Improvement in Cognitive Status and Depressive Symptoms Three Months after Cataract Surgery

    Get PDF
    Background: Cataract induced vision impairment can lead to loss of older people’s independence and self-esteem and limit their daily activities. Moreover it has comorbid cognitive impairment and depression. Cataract surgery may be one way to attenuate these comorbidities. The aim of this study was to compare pre-operative and postoperative depressive symptoms and cognitive impairments of patients who underwent cataract surgery. Methods: This study was a before - after clinical trial. Participants completed the following validated surveys one day before and again three months after surgery. Dependent variables were preoperative to postoperative within-patient difference in Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE) scores. Independent variable was improvement of visual acuity. Results: Mean age was 71.77±8.08, 54% were females. Mean postoperative visual acuity improvement was 0.7720±0.1758, mean GDS score difference was -1.49±1.72 and mean MMSE score difference was 0.28±0.88. Postoperative improvement of visual acuity, GDS and MMSE scores were statistically significant (p=0.001). The mean visual acuity improvement in the participants with age over 80 years was lower than the younger subjects; while improvement in MMSE scores in this age group was significantly higher than them. There were no significant relationship between visual acuity, GDS and MMSE scores before and after surgery based on BMI and educational level. Conclusions: It was concluded that cataract surgery is effective for relieving depressive symptoms in the elderly. Improved visual acuity at older ages has far more effects on reducing cognitive impairment

    High-precision magnetoencephalography for reconstructing amygdalar and hippocampal oscillations during prediction of safety and threat

    Get PDF
    Learning to associate neutral with aversive events in rodents is thought to depend on hippocampal and amygdala oscillations. In humans, oscillations underlying aversive learning are not well characterised, largely due to the technical difficulty of recording from these two structures. Here, we used high‐precision magnetoencephalography (MEG) during human discriminant delay threat conditioning. We constructed generative anatomical models relating neural activity with recorded magnetic fields at the single‐participant level, including the neocortex with or without the possibility of sources originating in the hippocampal and amygdalar structures. Models including neural activity in amygdala and hippocampus explained MEG data during threat conditioning better than exclusively neocortical models. We found that in both amygdala and hippocampus, theta oscillations during anticipation of an aversive event had lower power compared to safety, both during retrieval and extinction of aversive memories. At the same time, theta synchronisation between hippocampus and amygdala increased over repeated retrieval of aversive predictions, but not during safety. Our results suggest that high‐precision MEG is sensitive to neural activity of the human amygdala and hippocampus during threat conditioning and shed light on the oscillation‐mediated mechanisms underpinning retrieval and extinction of fear memories in humans

    The Bostrichidae of the Maltese Islands (Coleoptera)

    Get PDF
    The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835). A zoogeographical analysis and an updated checklist of the 12 species of Bostrichidae recorded from the Maltese Islands and neighbouring Sicilian islands (Pantelleria, Linosa and Lampedusa) are also provided. Rhizopertha dominica (Fabricius, 1792) form granulipennis Lesne in Beeson & Bhatia, 1937 from Uttarakhand (northern India) was overlooked by almost all subsequent authors. Its history is summarized and the following new synonymy is established: Rhizopertha dominica (Fabricius, 1792) form granulipennis Lesne in Beeson & Bhatia, 1937 = Rhyzopertha dominica (Fabricius, 1792), syn. n. Finally, records of Amphicerus bimaculatus from Azerbaijan, of Bostrichus capucinus (Linnaeus, 1758) from Jordan and Syria, of Scobicia chevrieri from Jordan and Italy, of Xyloperthella picea from Italy, and of Apate monachus from Corsica (France) and Italy, are also provided.peer-reviewe

    Primary auditory cortex representation of fear‐conditioned musical sounds

    Get PDF
    Auditory cortex is required for discriminative fear conditioning beyond the classical amygdala microcircuit, but its precise role is unknown. It has previously been suggested that Heschl's gyrus, which includes primary auditory cortex (A1), but also other auditory areas, encodes threat predictions during presentation of conditioned stimuli (CS) consisting of monophones, or frequency sweeps. The latter resemble natural prosody and contain discriminative spectro-temporal information. Here, we use functional magnetic resonance imaging (fMRI) in humans to address CS encoding in A1 for stimuli that contain only spectral but no temporal discriminative information. Two musical chords (complex) or two monophone tones (simple) were presented in a signaled reinforcement context (reinforced CS+ and nonreinforced CS-), or in a different context without reinforcement (neutral sounds, NS1 and NS2), with an incidental sound detection task. CS/US association encoding was quantified by the increased discriminability of BOLD patterns evoked by CS+/CS-, compared to NS pairs with similar physical stimulus differences and task demands. A1 was defined on a single-participant level and based on individual anatomy. We find that in A1, discriminability of CS+/CS- was higher than for NS1/NS2. This representation of unconditioned stimulus (US) prediction was of comparable magnitude for both types of sounds. We did not observe such encoding outside A1. Different from frequency sweeps investigated previously, musical chords did not share representations of US prediction with monophone sounds. To summarize, our findings suggest decodable representation of US predictions in A1, for various types of CS, including musical chords that contain no temporal discriminative information

    Evaluation of fungicidal and fungistatic activity of plant essential oils towards plant pathogenic and saprophytic fungi

    No full text
    The contact and vapor effects of essential oils from different plants were studied in vitro for fungicidal and fungistatic activity towards different Basidiomycete, Ascomycete, Zygomycete and Oomycete taxa. Of nine essential oils tested, most were fungicidal at very low concentrations to most of the fungi. Hyphae were more sensitive than spores to the formulations. The essential oils citral, β-citronellol, geraniol and oil of lavender, at 1 μL mL-1 medium or 12 μL L-1 of air, inhibited growth and germination in the fungal species examined. Different species of fungal genera reacted differently to the formulations. Some of the formulations were fungistatic to spore germination

    Hippocampal representation of threat features and behavior in a human approach–avoidance conflict anxiety task

    Get PDF
    Decisions under threat are crucial to survival and require integration of distinct situational features, such as threat probability and magnitude. Recent evidence from human lesion and neuroimaging studies implicated anterior hippocampus (aHC) and amygdala in approach-avoidance decisions under threat, and linked their integrity to cautious behavior. Here we sought to elucidate how threat dimensions and behavior are represented in these structures. Twenty human participants (11 female) completed an approach-avoidance conflict task during high-resolution fMRI. Participants could gather tokens under threat of capture by a virtual predator, which would lead to token loss. Threat probability (predator wake-up rate) and magnitude (amount of token loss) varied on each trial. To disentangle effects of threat features, and ensuing behavior, we performed a multifold parametric analysis. We found that high threat probability and magnitude related to BOLD signal in left aHC/entorhinal cortex. However, BOLD signal in this region was better explained by avoidance behavior than by these threat features. A priori ROI analysis confirmed the relation of aHC BOLD response with avoidance. Exploratory subfield analysis revealed that this relation was specific to anterior CA2/3 but not CA1. Left lateral amygdala responded to low and high, but not intermediate, threat probability. Our results suggest that aHC BOLD signal is better explained by avoidance behavior than by threat features in approach-avoidance conflict. Rather than representing threat features in a monotonic manner, it appears that aHC may compute approach-avoidance decisions based on integration of situational threat features represented in other neural structures.SIGNIFICANCE STATEMENT An effective threat anticipation system is crucial to survival across species. Natural threats, however, are diverse and have distinct features. To be able to adapt to different modes of danger, the brain needs to recognize these features, integrate them, and use them to modify behavior. Our results disclose the human anterior hippocampus as a likely arbiter of approach-avoidance decisions harnessing compound environmental information while partially replicating previous findings and blending into recent efforts to illuminate the neural basis of approach-avoidance conflict in humans
    corecore