105 research outputs found

    The Falling Dollar and Its Impact on the Saudi Economy

    Get PDF
    As foreign exchange studies show, after a fairly strong performance in 2014, the US Dollar (USD) plunged in 2015 in relation to the Euro, British Pound, Japanese Yen, and other global currencies (US Forex 2015). While the trend on US currency fall similarly happened in the past, the weak global confidence now on the US economy has cast serious apprehension on the prospect for any renewed global economic stability. Whenever the USD, as central world currency, declines or appreciates significantly in value, the change impacts the economies of most nations around the world (Amadeo 2015).  One of the countries that stand most vulnerable to any serious and unwanted dysfunction of the USD is Saudi Arabia, which, as a matter of key economic policy, has fixed its currency exchange to Saudi Arabia Riyals (SAR) 3.75 to USD 1.00 since 1986 (Al-Hamidy 2013).  This paper aims at Highlighting the risks of devaluation of the dollar on the Saudi economy There are seven sections in the paper after the introduction. In sections two The changing price of gold and oil in term of USD…; section three The Impacts of fixed exchange rate on the Saudi Economy …;The rationale and implication for the fixed rate,  Policy measures to overcome the risk caused by the depreciation of USD…Possible Policy Options in the Short…, and in the last section Concluding Remarks…

    Differential transformation method for a reliable treatment of the nonlinear biochemical reaction model

    Get PDF
    Abstract In this paper, we present a numeric-analytic solution of the wellknown Michaelis-Menten nonlinear biochemical reaction system based on differential transformation method (DTM). We shall compare the DTM against the homotopy-perturbation method (HPM). The numerical results obtained from the DTM and HPM are in complete agreement

    An automated test case generating tool using UML activity diagram

    Get PDF
    Software or application testing is a process of executing a program with the goal of finding defect to make better system. In software testing phase, writing test cases is one of the important activities. Manually writing test cases approach is lengthy of time period and need more effort to accomplish the process. On the other hand, automated test case generation technique is the way to solve this issue and model-based test case generation approach would be the appropriate for this automation process. Usually, a model is required in model-based testing approach to generate the test cases and UML activity diagram is the model in our research. In this paper, we explained our proposed model-based test case generating approach and we successfully developed a tool based on our proposed technique that could generate test cases automatically using UML activity diagram as an input. Finally, we conducted an experiment on a real life simple application of a system using the tool and successfully able to show that our tool can produce same test cases as manually writing test cases of the same system but this tool can save a lot of time and effort as well

    Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat

    Get PDF
    YesBackground: Asenapine is a new pharmacological agent for the acute treatment of schizophrenia and bipolar disorder. It has relatively higher affinity for serotonergic and α2-adrenergic than dopaminergic D2 receptors. We evaluated the effects of asenapine, risperidone, and olanzapine on acute and subchronic psychotomimetic-induced disruption of cued reversal learning in rats. Methods: After operant training, rats were treated acutely with D-amphetamine (0.75 mg/kg intraperitoneally [i.p.]) or phencyclidine (PCP; 1.5 mg/kg i.p.) or sub-chronically with PCP (2 mg/kg i.p. for 7 days). We assessed the effects of acute coadministration of asenapine, risperidone, or olanzapine on acute D-amphetamine– and PCP-induced deficits and the effects of long-term coadministration of these agents (for 28 additional days) on the deficits induced by subchronic PCP. Results: Deficits in reversal learning induced by acute D-amphetamine were attenuated by risperidone (0.2 mg/kg i.p.). Acute PCP-induced impairment of reversal learning was attenuated by acute asenapine (0.025 mg/kg subcutaneously [s.c.]), risperidone (0.2 mg/kg i.p.), and olanzapine (1.0 mg/kg i.p.). Subchronic PCP administration induced an enduring deficit that was attenuated by acute asenapine (0.075 mg/kg s.c.) and by olanzapine (1.5 mg/kg i.p.). Asenapine (0.075 mg/kg s.c.), risperidone (0.2 mg/kg i.p.), and olanzapine (1.0 mg/kg i.p.) all showed sustained efficacy with chronic (29 d) treatment to improve subchronic PCP-induced impairments. Conclusion: These data suggest that asenapine may have beneficial effects in the treatment of cognitive symptoms in schizophrenia. However, this remains to be validated by further clinical evaluation.This research was supported by Schering-Plough Corporation, now Merck & Co., Inc. and Pfizer Inc

    A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats

    Get PDF
    YesRationale The NMDA receptor antagonist, phencyclidine (PCP), has been shown to induce symptoms characteristic of schizophrenia. A loss in executive function and the ability to shift attention between stimulus dimensions is impaired in schizophrenia; this can be assessed in rodents by the perceptual attentional set-shifting task. Objective The aim of this study was to investigate whether the deficits induced by sub-chronic PCP in attentional set-shifting could be reversed by sub-chronic administration of clozapine, risperidone or haloperidol. Methods Adult female hooded-Lister rats received sub-chronic PCP (2 mg/kg) or vehicle (1 ml/kg) i.p. twice daily for 7 days, followed by a 7-day washout period. PCP-treated rats then received clozapine, risperidone, haloperidol or vehicle once daily for 7 days and were then tested in the perceptual set-shifting task. Results PCP significantly (p < 0.01) increased the number of trials to reach criterion in the EDS phase when compared to vehicle and this deficit was significantly (p < 0.01) attenuated by sub-chronic clozapine (2.5 mg/kg) and risperidone (0.2 mg/kg), but not by sub-chronic haloperidol treatment (0.05 mg/kg). Conclusions These data show that sub-chronic PCP produced a robust deficit within the EDS phase in the attentional set-shifting task, in female rats. Atypical antipsychotics, clozapine and risperidone, but not the classical agent, haloperidol, significantly improved the PCP-induced cognitive deficit

    D1-like receptor activation improves PCP-induced cognitive deficits in animal models: Implications for mechanisms of improved cognitive function in schizophrenia

    Get PDF
    YesPhencyclidine (PCP) produces cognitive deficits of relevance to schizophrenia in animal models. The aim was to investigate the efficacy of the D1-like receptor agonist, SKF-38393, to improve PCPinduced deficits in the novel object recognition (NOR) and operant reversal learning (RL) tasks. Rats received either sub-chronic PCP (2 mg/kg) or vehicle for 7 days, followed by a 7-day washout. Rats were either tested in NOR or the RL tasks. In NOR, vehicle rats successfully discriminated between novel and familiar objects, an effect abolished in PCP-treated rats. SKF-38393 (6 mg/kg) significantly ameliorated the PCP-induced deficit (Pb0.01) an effect significantly antagonised by SCH-23390 (0.05 mg/kg), a D1-like receptor antagonist (Pb0.01). In the RL task sub-chronic PCP significantly reduced performance in the reversal phase (Pb0.001); SKF-38393 (6.0 mg/kg) improved this PCPinduced deficit, an effect antagonised by SCH-23390 (Pb0.05). These results suggest a role for D1-like receptors in improvement of cognitive function in paradigms of relevance to schizophrenia

    Exploring factors among healthcare professionals that inhibit effective pain management in cancer patients

    Get PDF
    Aim: The aim of this study was to investigate differences in the barriers to good cancer pain management between physicians, nurses, and pharmacists in Jordan. Design: A descriptive correlational design was used to answer the research questions of this study. Methods: A group of 473 participants completed the study questionnaires (Barriers Questionnaire – II and Nurses’ Knowledge and Attitudes Survey). Results: Fears related to analgesic use, fears related to opioid side effects, communication, cultural beliefs, and lack of knowledge were the most clearly identified barriers to cancer pain management. Cancer pain management has not previously been an area of interest for the Jordanian health authorities. Conclusion: The information that emerged from this study helps to identify the current barriers and misconceptions among health professionals that prevent effective pain management for cancer patients. To maximize the role of health professionals in this area, health administrators need to provide them with more specialized training and empowerment

    Phencyclidine (PCP)-Induced Disruption in Cognitive Performance is Gender-Specific and Associated with a Reduction in Brain-Derived Neurotrophic Factor (BDNF) in Specific Regions of the Female Rat Brain

    Get PDF
    Phencyclidine (PCP), used to mimic certain aspects of schizophrenia, induces sexually dimorphic, cognitive deficits in rats. In this study, the effects of sub-chronic PCP on expression of brain-derived neurotrophic factor (BDNF), a neurotrophic factor implicated in the pathogenesis of schizophrenia, have been evaluated in male and female rats. Male and female hooded-Lister rats received vehicle or PCP (n = 8 per group; 2 mg/kg i.p. twice daily for 7 days) and were tested in the attentional set shifting task prior to being sacrificed (6 weeks post-treatment). Levels of BDNF mRNA were measured in specific brain regions using in situ hybridisation. Male rats were less sensitive to PCP-induced deficits in the extra-dimensional shift stage of the attentional set shifting task compared to female rats. Quantitative analysis of brain regions demonstrated reduced BDNF levels in the medial prefrontal cortex (p < 0.05), motor cortex (p < 0.01), orbital cortex (p < 0.01), olfactory bulb (p < 0.05), retrosplenial cortex (p < 0.001), frontal cortex (p < 0.01), parietal cortex (p < 0.01), CA1 (p < 0.05) and polymorphic layer of dentate gyrus (p < 0.05) of the hippocampus and the central (p < 0.01), lateral (p < 0.05) and basolateral (p < 0.05) regions of the amygdaloid nucleus in female PCP-treated rats compared with controls. In contrast, BDNF was significantly reduced only in the orbital cortex and central amygdaloid region of male rats (p < 0.05). Results suggest that blockade of NMDA receptors by sub-chronic PCP administration has a long-lasting down-regulatory effect on BDNF mRNA expression in the female rat brain which may underlie some of the behavioural deficits observed post PCP administration

    Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism

    Get PDF
    YesCognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia

    Asenapine effects in animal models of psychosis and cognitive function

    Get PDF
    Asenapine, a novel psychopharmacologic agent in the development for schizophrenia and bipolar disorder, has high affinity for serotonergic, α-adrenergic, and dopaminergic receptors, suggesting potential for antipsychotic and cognitive-enhancing properties. The effects of asenapine in rat models of antipsychotic efficacy and cognition were examined and compared with those of olanzapine and risperidone. Amphetamine-stimulated locomotor activity (Amp-LMA; 1.0 or 3.0 mg/kg s.c.) and apomorphine-disrupted prepulse inhibition (Apo-PPI; 0.5 mg/kg s.c.) were used as tests for antipsychotic activity. Delayed non-match to place (DNMTP) and five-choice serial reaction (5-CSR) tasks were used to assess short-term spatial memory and attention, respectively. Asenapine doses varied across tasks: Amp-LMA (0.01–0.3 mg/kg s.c.), Apo-PPI (0.001–0.3 mg/kg s.c.), DNMTP (0.01–0.1 mg/kg s.c.), and 5-CSR (0.003–0.3 mg/kg s.c.). Asenapine was highly potent (active at 0.03 mg/kg) in the Amp-LMA and Apo-PPI assays. DNMTP or 5-CSR performance was not improved by asenapine, olanzapine, or risperidone. All agents (P &lt; 0.01) reduced DNMTP accuracy at short delays; post hoc analyses revealed that only 0.1 mg/kg asenapine and 0.3 mg/kg risperidone differed from vehicle. All active agents (asenapine, 0.3 mg/kg; olanzapine, 0.03–0.3 mg/kg; and risperidone, 0.01–0.1 mg/kg) significantly impaired 5-CSR accuracy (P &lt; 0.05). Asenapine has potent antidopaminergic properties that are predictive of antipsychotic efficacy. Asenapine, like risperidone and olanzapine, did not improve cognition in normal rats. Rather, at doses greater than those required for antipsychotic activity, asenapine impaired cognitive performance due to disturbance of motor function, an effect also observed with olanzapine and risperidone
    corecore