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Abstract 

Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of 

the neuro- and psychopathology of these deficits depends on the availability of carefully 

validated animal models which will assist the development of novel therapies. There is much 

evidence that at least some of the pathology and symptomatology (particularly cognitive and 

negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system 

which may be modelled in animals through the use of NMDA receptor antagonists. The 

current review examines the validity of this model in rodents. We review the ability of acute 

and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine 

(PCP), ketamine and MK801 (dizocilpine) to produce cognitive disturbances of relevance to 

schizophrenia in rodents and their subsequent reversal by first- and second-generation 

antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in 

behavioural tests assessing the various domains of cognition and negative symptoms are 

examined: novel object recognition for visual memory, reversal learning and attentional set 

shifting for problem solving and reasoning, 5-choice serial reaction time for attention and 

speed of processing; in addition to effects on social behaviour and neuropathology. The 

evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit 

and negative symptoms of schizophrenia as well as certain pathological disturbances seen in 

the illness. This will facilitate the evaluation of much-needed novel therapies for improved 

therapy of cognitive deficits and negative symptoms in schizophrenia. 

KEY WORDS: Schizophrenia, animal model, NMDA antagonist, cognition, 

memory, neuropathology, first and second generation antipsychotics 
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1.0 Introduction 

Schizophrenia patients suffer from enduring and persistent psychotic symptoms including a 

chronic deficiency in their cognitive abilities (Braff et al, 1991; Steinpreis, 1996). Indeed, 

cognitive (and concomitant social) dysfunction is a core component of schizophrenia, present 

even before the onset of psychosis and has a significant bearing on patient recovery, function 

in society and on all aspects of everyday life (Addington et al. 2001; Green, 1996). 

Given the negative impact of cognitive and social dysfunction on long-term patient function 

and quality of life, the lack of effective treatment is clearly a key unmet clinical need 

(Goldberg and Gold, 1995). The clinical literature has generally reported no consistent, 

substantial improvement in cognition (at best only a marginal improvement) with the current 

pharmacotherapies for schizophrenia (Harvey and McClure, 2006; Keefe et al. 2007). Indeed, 

we have conducted our own meta-analysis of the literature and found that total PANSS score 

improvement was not statistically greater with second-generation antipsychotics (SGAs) 

when compared with the first-generation antipsychotic (FGA), haloperidol (Tomes, 

unpublished observations), which is in agreement with findings of the recent CUtLASS study 

(Jones et al. 2006). Cognition was not assessed in our analysis but this provides further 

evidence for the urgent need for improvement in therapy.  

In further recognition of the need to address cognitive dysfunction in patients with 

schizophrenia and to encourage the development of cognition-enhancing drugs for 

schizophrenia, the National Institute of Mental Health, in collaboration with the University of 

California at Los Angeles and the US Food and Drug Administration, initiated the MATRICS 

(Measurement and Treatment Research to Improve Cognition in Schizophrenia) and TURNS 

(Treatment Units for Research on Neurocognition and Schizophrenia) programs (MATRICS 

and TURNS.ucla.edu).  
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One way to address the problem is the development and validation of better animal models  

mimicking cognitive deficits and negative symptoms of schizophrenia as suggested by the 

MATRICS committee. Normalisation of cognitive deficits requires the development of 

validated animal models which is a difficult area of study for any human disorder but most 

notably for schizophrenia, a complex and uniquely human psychiatric illness. Cognitive 

enhancement is difficult to show in ‘normal’ animals, as there is a small effect window, there 

are few validated disease models, and no current ‘gold standard’ medications available to use 

as a positive control. Therefore a reliable means of inducing cognitive impairment is 

necessary whether through the use of a pharmacological, genetic or neurodevelopmental 

approach, all of which have been attempted. There have been some excellent recent and 

extensive reviews in this subject area. These include -  the use of the MATRICS test battery 

as a guide to using preclinical tests for studying novel targets for cognitive improvement in 

schizophrenia (Young et al. 2009); exploration of the mechanisms by which NMDA receptor 

antagonism provides a relevant model of schizophrenia in animals (Jentsch and Roth, 1999; 

Coyle, 2006; Large, 2007-focusing on novel therapies; Morris et al. 2005; Mouri et al. 2007); 

the use of isolation rearing as a neurodevelopmental model (Fone and Porkess, 2008); and 

strategies for improving pharmacotherapy of schizophrenia (Arnt et al. 2008). In addition the 

debate continues concerning the value (or otherwise) of current antipsychotic medication for 

improvement of cognitive deficit symptoms in the clinic. The current review focuses on the 

NMDA receptor hypofunction hypothesis of schizophrenia and the success (or otherwise) of 

recent studies using NMDA receptor antagonists in rodents to mimic the various domains of 

cognitive disturbances associated with schizophrenia and improvement by existing therapies 

and novel targets where appropriate.  

It was initially hypothesized that a hyperdopaminergic state resulting from an excess of 

dopamine in the brain was the main cause for the condition of schizophrenia (Carlsson and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4S-3WWMMV1-8&_coverDate=07%2F31%2F1999&_alid=303455862&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4982&_sort=d&view=c&_acct=C000010080&_version=1&_urlVersion=0&_userid=122861&md5=dd6cd54b540859bb0d9fc06a87779104#bib11#bib11
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Lindqvist 1963; Seeman 1987). While there is much supporting evidence to validate this 

theory, including recent demonstration that psychotic patients release more dopamine at the 

synapse on stimulation with amphetamine than normal control groups suggesting increased 

midbrain dopamine activity  (Abi-Dargham et al. 2009), a revision of this theory became 

necessary when it was observed that the negative and cognitive symptoms of schizophrenia 

could not be accounted for by an excess of dopamine in the system (Thaker & Carpenter 

2001). The origin of the idea that glutamatergic neurotransmission is disrupted in 

schizophrenia dates back to the 1950s when it was first reported that the anaesthetic 

phenylcyclidine (PCP, Sernylan (R) Parke Davis) could produce psychotic effects in people 

(Luby et al., 1959). PCP is a non-competitive NMDA receptor antagonist, which can induce a 

psychotic state that has some similarities to schizophrenia. PCP or ketamine given acutely to 

healthy human subjects induces hyperactivity, paranoia, hallucinations, formal thought 

disorder and cognitive impairments (Javitt and Zukin. 1991; Krystal et al. 1994). Both PCP 

and ketamine exacerbate the symptoms of schizophrenia in patients (Malhotra et al. 1997). A 

single dose of PCP has been shown to produce hallucinations and reduce cognitive function 

in schizophrenia patients (Krystal et al. 1994; Steinpres 1996). While both dopamine agonists 

(e.g. amphetamine) and glutamate non-competitive NMDA receptor antagonists (e.g. PCP) 

can replicate psychosis most effectively, the latter are able to better produce the negative and 

cognitive deficits associated with schizophrenia. Consequently, a great deal of research 

emphasis is now being placed on the role of glutamate in the pathophysiology and treatment 

of schizophrenia.  

A mechanism, which could clarify in part, the symptomatology and natural course of 

schizophrenia, was proposed, based on NMDA receptor hypofunction by Olney and 

colleagues (1999). It suggested a dysfunction of the NMDA receptor, which could be 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4S-3WWMMV1-8&_coverDate=07%2F31%2F1999&_alid=303455862&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4982&_sort=d&view=c&_acct=C000010080&_version=1&_urlVersion=0&_userid=122861&md5=dd6cd54b540859bb0d9fc06a87779104#bib11#bib11
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reproduced by blocking NMDA receptors pharmacologically with PCP, ketamine or MK801. 

The organization and functions of the forebrain glutamatergic systems strongly implicates 

glutamate in the pathophysiology of schizophrenia. Additionally, several risk factors genes 

(eg neuregulin, dysbindin, COMT, DISC1) for schizophrenia may be linked with dysfunction 

of the glutamatergic system (Harrison and Owen. 2003; Harrison and Weinberger, 2005). 

There are several post-mortem studies and neuropathological findings, which support the 

hypothesis that disruption in the normal functioning of the glutamatergic system, contribute 

to the “symptomatic manifestations of schizophrenia” (reviewed in Kristiansen et al. 2007). 

Development of a successful animal model will undoubtedly allow better understanding of 

the disease process and ultimately testing of novel targets for cognition in schizophrenia as 

outlined in TURNS. Seven domains of cognition have been identified as being typically 

impaired in schizophrenia patients: (1) working memory, (2) attention, (3) verbal learning 

and memory, (4) visual learning and memory, (5) reasoning and problem solving, (6) speed 

of processing and, perhaps most important of all, (7) social cognition. In our laboratory, we 

have attempted to validate a test for each of these domains with disruption of normal 

cognitive processing induced by PCP. The two domains we have not yet validated in our 

laboratory include working memory and verbal learning and memory, with the obvious 

difficulties of mimicking these deficits in animals. The latest developments in measuring 

performance in laboratory tests in these two cognitive domains (and indeed in each of the 

seven cognitive domains) have recently been reviewed by Young and colleagues (2009).   

As reviewed elsewhere (Hagan and Jones, 2005; Floresco et al. 2005) animal models for 

cognition in schizophrenia should: (1) mimic the fundamental cognitive deficits found in 

schizophrenia patients (face validity); (2) conform to a theoretical rationale, such as the 

proposed pathophysiology and symptomatology in schizophrenia (construct validity); and (3) 

predict known and novel therapeutics (predictive validity).  Our review will evaluate whether 
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the NMDA antagonist model is successful and can provide a reliable animal model of 

cognitive deficits and negative symptoms of schizophrenia. 
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2.0 Novel object recognition 

Visual memory deficits may be measured by recognition tasks such as the novel object 

recognition (NOR) paradigm as described in TURNS [reviewed in Dere et al., (2007), 

Winters et al (2008), Young et al (2009)]. A recognition memory task allows the comparison 

between presented stimuli and previously stored information. Ennaceur and Delacour (1988) 

described the NOR test for rodents, which was based on the differential exploration of 

familiar and new objects. The NOR test is a non-rewarded, ethologically relevant paradigm 

based on the spontaneous exploratory behaviour of rodents that measures visual episodic 

memory. In most commonly used forms of the test, each session consists of two trials. In the 

first trial, the rats are exposed to two identical objects in an open field. During the second 

trial, rats are exposed to two dissimilar objects, one familiar object from the first trial and one 

new object. Object recognition can be measured as the difference in time spent exploring the 

familiar and the new object. Rats (and mice) have been shown to spend more time exploring 

the new object. It has been found that rats are able to discriminate between the familiar and 

the novel object when the inter-trial interval is between 3 minutes and 1-3 hours, but not 

when it is greater than 24 hours, although this effect may be sex dependent in the rat 

(Sutcliffe et al, 2007). The duration of each trial is also important as a preference for the 

novel object only lasts during the first 1 or 2 minutes, after which time preference diminishes 

as both objects become familiar and are explored equally. 

We have recently shown that acute administration of PCP (1.5-2 mg/kg) to female hooded- 

Lister rats induces a selective and robust impairment in the retention trial of the NOR 

paradigm, using a 1 min inter-trial interval (ITI), rats were unable to discriminate between the 

novel and familiar object (Grayson et al., 2004). This effect was prevented by administration 
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of oestradiol benzoate (5-10 ug/kg) 24h prior to the acute administration of PCP (2 mg/kg) 

(Sutcliffe et al., 2008).  

Our laboratory has shown in numerous studies that a sub-chronic PCP treatment regime, 

specifically, 2 mg/kg twice daily for seven days followed by a seven day washout period, 

induces a robust cognitive deficit in the NOR paradigm, whereby the ability of rats to 

discriminate between novel and familiar objects is abolished. In these studies the PCP is 

given prior to any habituation or testing. These deficits can be subsequently improved by the 

acute administration of SGAs clozapine and risperidone but not by the FGA haloperidol 

(Grayson et al., 2007). We have also demonstrated efficacy of sertindole (Idris et al., 2010), 

and several novel agents including the 5-HT6 receptor antagonist, Lu AE58054 (Arnt et al. 

2010); ampakines, CX546 and CX516 (Daamgard et al. 2010) and the full agonist at α7 

nicotinic receptors, PNU282987 (McLean et al. 2010a). In addition, BL1020, glycine uptake 

inhibitors and the novel antipsychotic, asenapine also show efficacy to reverse the PCP-

induced deficit in this task using a 1 min and 1 hour (for sertindole) ITI. We have recently 

demonstrated involvement of dopamine D1 receptors (McLean et al. 2009a) while others have 

shown serotonin 5-HT1A receptor involvement (Nagai et al. 2009) in mechanisms for 

improvement of PCP-induced deficits in this task. This work combined with recent results 

from a preliminary study using female Long Evans rats suggests that the sub-chronic PCP 

treated rats have reduced prefrontal cortical dopamine activation in this task providing 

considerable support for this as a model of cognition in schizophrenia, as hypofrontality is a 

key feature of schizophrenia pathology (Hill et al. 2004). In our study, sub-chronic vehicle 

treated rats showed significantly increased prefrontal cortical dopamine levels during the 

retention phase of the task only, as measured by in vivo microdialysis. Rather impressively, 

this increase in prefrontal cortical dopamine was absent in the sub-chronic PCP treated rats, 
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suggesting that recruitment of dopamine in the pre-frontal cortex is necessary for memory of 

the familiar object and that PCP treated rats lack this ability (Snigdha et al., 2008). It remains 

to be determined whether the antipsychotic-induced reversal of PCP-induced NOR deficits is 

mediated by a restoration of prefrontal cortical dopamine. 

Our findings are in agreement with Hashimoto et al., (2005) who showed an NOR deficit in 

mice, using a sub-chronic PCP dosing regimen of 10 mg/kg once daily for ten days, 

administered on days 1-5 and 8-12. This deficit was reversed by the administration of 

clozapine, and SSR180711 (a nicotinic α7 receptor agonist) but not haloperidol when 

administered once daily for 2 weeks. Using an identical sub-chronic PCP dosing regimen to 

Hashimoto et al (2005), 14 day treatment with the partial agonist of 5-HT1A receptors 

perospirone (3.0 and 10.0 mg/kg), or the antibiotic minocycline (at 40 mg/kg) were shown to 

reverse the sub-chronic PCP induced NOR deficit in mice (Hagiwara et al., 2008; Fujita et 

al., 2008). Nagai and colleagues employed a similar sub-chronic dosing regime in mice and 

administered PCP 10mg/kg once per day for fourteen days. Results from this study showed 

that sub-chronic PCP induced a significant reduction in novel object exploration in the 

retention trial which was subsequently reversed by the administration of SGA aripiprazole 

but not by FGA haloperidol (Nagai et al., 2009).  

A small number of studies have looked at the effect of ketamine on object recognition. 

Pitsikas et al (2008) demonstrated that acute administration of ketamine (1-3 mg/kg) 

consistently impaired performance in NOR in male Wistar rats. In this study, ketamine was 

given both before acquisition and just after the acquisition trial followed by a 1 hour ITI, both 

treatments produced significant NOR deficits, indicating that ketamine can affect the 

acquisition and storage and/or retrieval of memory. In support of these findings, it has been 

shown that acute administration of ketamine (30 mg/kg, 10 times the dose used in rats above) 
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produces impairment in cognitive function in the NOR task in mice with a 24 h inter-trial 

interval, which was restored by intracerebroventricular administration of the selective 

mGluR5 agonist, CHPG ((RS)-2-chloro-5-hydroxyphenylglycine) and the positive allosteric 

modulator (of the MGluR5 receptor, DFB (3,3'-difluorobenzaldazine) (Chan et al., 2008).  

Acute administration of the non competitive NMDA receptor antagonist MK801 at a dose of 

0.05 mg/kg, induced an NOR deficit in a paradigm using a 2 hour ITI in male hooded- Lister 

rats (King et al., 2004). In support of these results, de Lima and colleagues (2005), showed 

that pre-training administration of MK801 (0.01-0.1 mg/kg) and a post training injection of 

0.1 mg/kg produced a significant disruption in recognition memory with ITIs of 1.5 hour and 

24 hour in female Wistar rats. The effect of MK801 on NOR has also been studied in mice. 

Following MK801 at 0.2 mg/kg, 30 min prior to the acquisition trial, with a 1.5 h ITI, mice 

failed to differentiate between a novel and familiar object. Surprisingly, when MK801 (0.1 

and 0.2 mg/kg) was given immediately after the acquisition trial or 30 min prior to the 

retention trial the mice showed increased exploration of the novel object. These results 

suggest that in mice, activation of the NMDA receptors is necessary for encoding of 

recognition memory but not for consolidation and retrieval processes (Nilsson et al., 2007). In 

another study, the MK801 (0.1 mg/kg)-induced impairment in NOR following a 2h ITI in 

male Wistar rats was restored by acute treatment with clozapine (1.0 and 5.0 mg/kg), D-

serine (800 mg/kg) and the glycine transporter inhibitor NFPS (0.3-1.0 mg/kg), while 

haloperidol (0.03-0.1 mg/kg) failed to restore MK801-induced deficit (Karasawa et al. 2008).  

In summary the NOR task in both rats and mice is sensitive to disruption by NMDA receptor 

antagonists with good predictive validity, i.e. showing restoration of performance with SGAs 

and novel agents. The task itself is comparatively easy to run and has a good level of 

ethological relevance. This, combined with emerging evidence that the PCP-induced deficit is 
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mediated by impaired prefrontal dopaminergic neurotransmission supports its validity as a 

useful animal model for cognitive dysfunction of particular relevance to schizophrenia. 
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3.0 Reversal Learning 

A reversal learning task usually comprises two distinct components, an initial phase that 

requires memory of a previously learned reward contingency, followed by a reversal phase, 

in which the reward contingency is then reversed.  Animals are required to inhibit a 

previously rewarded strategy and acquire the new strategy.  Thus, effective performance 

requires animals to demonstrate flexibility, attention and motivation, to suppress a previously 

learned response and implement a new response (Jones et al., 1991).  Failure to switch, or 

perseveration on the previously learned response, can be readily observed in patients with 

schizophrenia undertaking tasks such as the Wisconsin Card Sorting test (Pantelis et al., 

1999; Liddle, 2000).  We suggest that this type of paradigm could provide the basis for a 

rodent model in which to predict the ability of novel antipsychotic drugs to ameliorate aspects 

of executive dysfunction associated with schizophrenia.  Furthermore, the TURNS initiative 

has identified that reversal learning tasks, as with attentional set-shifting tasks can be used to 

determine the problem solving deficits described in the MATRICS cognitive battery 

(www.turns.ucla.edu). 

Successful reversal learning ability relies on the intact function of the prefrontal cortex.  It 

has been shown more specifically that lesions of the orbital prefrontal cortex (OPFC) impair 

reversal learning ability within the attentional set-shifting task in male Lister Hooded rats 

(McAlonan and Brown, 2003; Tait and Brown, 2007).  These results are concurrent with 

those of Bohn and co-workers, showing that lesions of the OPFC impair reversal learning in 

an operant lever pressing-based task in male Sprague-Dawley rats (Bohn et al., 2003).  These 

studies are also supported by recent data showing OFC lesions in male hooded-Lister rats 

produced a deficit in reversal learning ability (Boulougouris et al., 2007). 
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The reversal learning paradigm used in our laboratory was developed on the basis of our 

previous work using a same-day reversal learning test in the marmoset (Smith et al., 1999).  

We have now adapted the model for rats.  The paradigm is similar to the reversal learning test 

of Jones and colleagues (1991), in which isolation reared rats showed impairments in 

acquisition of a serial reversal learning phase.  In our operant reversal learning task, rats are 

trained in Skinner boxes to respond for food reward by pressing an active lever.  On the 

following day, rats have 5 mins to respond on the active lever from the previous training day, 

they then have a 2 min time-out, before the active lever is switched to the opposite lever.  

Rats then have 5 mins in this reversal phase to switch their attention to the new correct lever.  

We have shown that in female hooded-Lister rats acute administration of the NMDA receptor 

antagonist PCP (1.5 mg/kg) impairs percent correct responding in the reversal phase of the 

task only, leaving initial phase performance intact (Abdul-Monim et al., 2003; Idris et al., 

2005; 2006; 2009).  We have shown that the acute PCP-induced selective deficit in reversal 

learning was reversed by acute treatment with clozapine as well as with phenytoin and 

lamotrigine but not valproate (Idris et al. 2009). However haloperidol reversed the d-

amphetamine but not PCP-induced reversal learning impairment (Idris et al., 2005). 

It is becoming increasingly apparent that repeated exposure to PCP can induce more robust 

and enduring cognitive deficits (Jentsch et al., 1997a; b).  We have consistently shown that 

sub-chronic PCP treatment (2 mg/kg twice daily, i.p., for 7 days followed by 7 days washout 

period) induces a robust enduring deficit in reversal learning performance, again selective for 

the reversal phase leaving initial phase performance intact in female hooded-Lister rats 

(Abdul-Monim et al., 2006; 2007; Idris et al. 2010; McLean et al., 2009a; 2009b). 

Importantly rats are tested in the drug (PCP)-free state thus avoiding any confound with 

psychotomimetic drug-induced effects, such as motor stimulation at doses of 3 mg/kg (ip) 
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and above. These sub-chronic PCP-induced deficits in reversal learning were ameliorated by 

SGAs such as clozapine, but not by FGAs, haloperidol and chlorpromazine (Abdul-Monim et 

al., 2006) showing some predictive validity for the clinic. Several newer antipsychotics such 

as asenapine (M
c
Lean et al. 2010b) and sertindole (Idris et al., 2010) reverse the sub-chronic 

PCP-induced deficit in this paradigm. The dopamine D1 receptor agonist SKF 38393 and 

antagonists at several 5-HT receptor subtypes including 5-HT6, 5-HT7, 5-HT2C and 5-HT2A 

(Idris et al. 2010; McLean et al., 2009a; 2009b) also show efficacy in this test making it of 

particular relevance for exploration of mechanisms of antipsychotics important for 

improvement of cognitive function.  In a reversal-learning task similar to that employed in 

our laboratory, however, using an innovative touch screen-based system, sub-chronic PCP (5 

mg/kg twice daily for 7 days, followed by a 7-day washout period) in male C57BL/6J mice 

did not affect reversal learning ability (Brigman et al., 2009).  However, in the same strain of 

mice, sub-chronic PCP (1.3 mg/kg once daily for 5 days) was found to impair all stages of the 

attentional set-shifting task, including reversals (Laurent and Podhorna, 2004).  Although it 

must be noted that PCP was administered 2 hours prior to testing, therefore the effects of 

acute PCP cannot be excluded.   

PCP is not the only means of producing a pharmacological deficit in reversal learning, we 

have shown that acute administration of the NMDA antagonists ketamine (15 mg/kg) and 

MK801 (0.05 mg/kg) produce a selective deficit for the reversal phase of the task (Idris et al., 

2006).  Reversal learning ability can also be assessed using other tasks such as the reversal 

stages within the attentional set-shifting paradigm.  Ketamine (30 mg/kg i.p., twice daily for 5 

days followed by a 10 day washout period), did not produce a deficit in set shifting in an 

operant paradigm, but did produce more perseverative errors than the control group in a 
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reversal of the acquired set-shift in an operant procedure in male Long-Evans rats (Floresco 

et al., 2009). 

In support of the PCP and ketamine results, as previously mentioned, whereas MK-801 (3 µg 

per hemisphere into the mPFC) was shown to produce selective deficits for the set 2 strategy 

in a maze-based set shifting task, it was found that systemic administration of MK-801 (0.1 

mg/kg, i.p.) impaired set 1 and set 2 strategies in male Sprague-Dawley rats.  The set 1 

strategy is equivalent to reversal learning ability (Stefani and Moghaddam, 2005).  MK-801 

at doses of 0.06 mg/kg and 0.1 mg/kg, but not 0.03 mg/kg impaired reversal learning in a 

maze based reversal learning task in male and female Long-Evans rats (Chadman et al., 

2006), whereby in acquisition, rats were required to go to one arm of the maze and in the 

reversal phase rats then had to switch contingencies and visit the opposite arm of the maze.  

In an operant lever pressing reversal learning task similar to that in our laboratory MK-801 

(0.025 mg/kg, s.c.) produced a deficit in the reversal phase compared to the vehicle-treated 

group in male Wistar rats (van der Meulen et al., 2003).  Following repeated reversals, rats 

treated with 0.025 mg/kg MK-801 showed an improvement to a similar level of responding 

as vehicle rats, while rats treated with MK-801 (0.05 mg/kg, s.c.) showed a partial 

improvement following repeated reversals, those treated with MK-801 at 0.1 mg/kg (s.c.) 

remained impaired (van der Meulen et al., 2003).  This provides support for the work of our 

laboratory whereby PCP treated rats are impaired in the reversal phase of the task only.  
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4.0 Attentional set-shifting 

One aspect of executive function is the ability to modify behaviour in response to the 

changing relevance of a stimulus; this is commonly assessed in patients using the Wisconsin 

Card Sorting Test (WCST) (Berg, 1948).  In more recent years a more conclusive battery of 

tests known as CANTAB (Cambridge neuropsychological test battery) has been developed 

(Downes et al., 1989).  The attentional set-shifting task represents a rat analogue of the 

human WCST and the CANTAB ID/ED task in which schizophrenia patients exhibit 

impaired set-shifting (Kolb and Wishaw, 1983; Haut et al., 1996; Pantelis et al., 1999; Tyson 

et al., 2004).  The TURNS initiative has identified that this test can be used to determine the 

problem solving deficits described in the MATRICS cognitive battery (www.turns.ucla.edu). 

In 2000, Birrell and Brown developed the attentional set shifting procedure for the rat.  The 

perceptual attentional set-shifting task (Birrell and Brown, 2000) investigates the ability of a 

rat to learn a rule and form an attentional set within the same sorting category (intra-

dimensional shift - IDS), as well as the ability to shift attentional set between different sorting 

categories (extra-dimensional shift - EDS).  Rats must carry out a series of 7 discriminations 

namely, simple discrimination (SD), compound discrimination (CD), reversal 1 (R1), intra-

dimensional shift (IDS), reversal 2 (R2), extra-dimensional shift (EDS) and reversal 3 (R3).  

Initial studies using the attentional set-shifting task showed that lesions of the medial 

prefrontal cortex (mPFC) produce a selective deficit in the EDS phase (Birrell and Brown, 

2000), whereas lesions of the orbital prefrontal cortex in male hooded-Lister rats selectively 

disrupts reversal learning (McAlonan and Brown, 2003).  

We have demonstrated a selective deficit in female hooded-Lister rats in the EDS phase 

following administration of sub-chronic PCP (2 mg/kg twice daily, i.p., for 7 days followed 

by 7 days washout period).  This deficit was attenuated by seven-day treatment with 
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clozapine and risperidone, but was unaffected by haloperidol (McLean et al., 2008).  Rodefer 

and colleagues combined the attentional set-shifting test with a sub-chronic PCP dosing 

regimen in male Long-Evans rats (5 mg/kg twice daily, i.p., for 7 days followed by a 10 day 

drug washout period) and found a selective deficit in the EDS phase (Rodefer et al., 2005).  

The PDE10A inhibitor, papaverine, reversed the PCP-induced deficit in the EDS phase 

(Rodefer et al., 2005).  In contrast, Rodefer and colleagues subsequently found that clozapine 

and risperidone to be ineffective in reversing the PCP-induced deficit, however sertindole and 

the selective 5-HT6 (SB-271046) and 5-HT2A (M100907) receptor antagonists did attenuate 

the PCP-induced impairment (Rodefer et al., 2008), which is similar to our findings using 

reversal learning paradigm (Idris et al. 2010).  This same dosing regime was shown again in 

male hooded-Lister rats to produce deficits in the EDS phase; an effect which was 

ameliorated by sertindole and the anti-narcoleptic drug modafinil but not by risperidone or 

haloperidol (Goetghebeur and Dias, 2009).  Egerton and co-workers also used a sub-chronic 

PCP regime in male Long-Evans rats (2.6 mg/kg daily, i.p., for 5 days followed by a 3 day 

washout period) and found a strong tendency towards a deficit in the EDS phase of the task 

(Egerton et al., 2008).  This group have shown more robust selective deficits using acute 

administration (i.p.) of 2.58 mg/kg PCP (Egerton et al., 2005) and a chronic intermittent 

schedule of 2.6 mg/kg of PCP once daily for 5 days followed by a single dose on days 8, 10, 

12, 15, 17, 19, 22, 24 and 26 (Egerton et al., 2008).  Conversely, other studies have shown 

that long-term intermittent administration of PCP (3 mg/kg, i.p., once per day administered 

Monday, Wednesday and Friday for 5 weeks, and 10 mg/kg, i.p., daily for 14 days) did not 

impair set-shifting ability in male Sprague-Dawley and Long-Evans rats respectively 

(Fletcher et al., 2005; Deschênes et al., 2006).  These data would suggest that continual 

dosing with PCP is more effective than an intermittent regimen.  An early post-natal 

treatment regime (10 and 20 mg/kg, s.c., on PND 7, 9 and 11) has also proved effective in 
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producing a selective deficit for the EDS phase of the task in male and female hooded-Lister 

rats (Broberg et al., 2008).  A subsequent study by this group (20 mg/kg on PND 7, 9 and11) 

has replicated the PCP-induced deficit and this effect was attenuated by the SGA sertindole 

and the ampakine compound CX516 (Broberg et al., 2009).   

Although most commonly used, PCP is not the only pharmacological means of producing 

cognitive impairments in attentional set-shifting, for example amphetamine sensitised male 

Sprague-Dawley rats show deficits in this task (Fletcher et al., 2005).  Conversely, the 

NMDA receptor antagonist, ketamine (30 mg/kg i.p., twice daily for 5 days followed by a 10 

day washout period), did not impair set-shifting ability in male Long-Evans rats in either a 

cross-maze-based task or in an operant procedure (Floresco et al., 2009).  Furthermore, in 

both tasks ketamine unexpectedly reduced the number of perseverative errors made compared 

to the saline-treated group; however in a reversal of the acquired set-shift in the operant 

procedure, ketamine did produce more perseverative errors than the control group (Floresco 

et al., 2009).  The authors attribute the lack of set-shifting deficit in ketamine-treated rats to a 

possible lack of training on the initial procedures compared to the attentional set-shifting task 

described by Birrell and Brown (2000), and due to the shorter duration of action of ketamine 

compared to PCP, i.e. ketamine-induced neuronal alterations may not have been sufficient to 

disrupt the mPFC dependent behaviours.  

In support of the above findings with PCP, intra-cortical injections of the NMDA receptor 

antagonist, MK-801 into the mPFC (1 or 3 µg per hemisphere), was shown to produce 

selective deficits for the set 2 strategy in a maze-based set shifting task in male Sprague-

Dawley rats (this is equivalent to the EDS phase in the perceptual attentional set-shifting 

task), whereas the AMPA receptor antagonist, LY293558 (1 µg per hemisphere), also 

impaired the set 1 strategy which represents acquisition of a discrimination rule (Stefani and 
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Moghaddam, 2003). Thus blockade of AMPA receptors may induce a more generalised 

cognitive deficit than that produced by NMDA receptor blockade which may be of more 

relevance to schizophrenia.  Following this study, it was found that systemic administration 

of MK-801 (0.1 mg/kg, i.p.) impaired set 1 and set 2 strategies, while injections directly into 

the mPFC (3 µg per hemisphere) produced selective deficits in set 2 only (Stefani and 

Moghaddam, 2005). Therefore, the deficits observed in set 1 are not controlled by the mPFC; 

these studies suggest the importance of mPFC NMDA receptors in tasks of cognitive 

flexibility. In summary, administration of the NMDA antagonists in an attentional set-shifting 

task produce deficits that closely resemble the cognitive inflexibility observed in 

schizophrenia.  Further research into this topic may provide us with the necessary 

understanding of the underlying neurobiological processes which contribute to attention and 

problem solving in schizophrenia. 
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 5.0 Attention 

Along with the myriad of other cognitive deficits associated with schizophrenia, the disorder 

often results in attentional dysfunction and executive impairment (Jones et al., 1994; 

Cornblatt & Keilp, 1994; an der Heiden & Hafner, 2000; Paine & Carlezon, 2009; 

MATRICS.ucla.edu). Attention is a multi-faceted system that allows an individual to detect, 

select and process relevant stimuli, while simultaneously filtering out irrelevant stimuli from 

the surrounding environment. Executive functioning, which includes abstract problem 

solving and behavioural inhibition, is often described as a system of higher-order cognitive 

processing that allows the individual to plan and execute goal-specific behaviours (Velligan 

& Bow-Thomas, 1999; O’Grada & Dinan, 2007). Many tasks have been developed to assess 

these aspects of cognitive ability in the clinic and include tests such as the Continuous 

Performance Task (CPT) and the Wisconsin Card Sorting Task (WCST) (Rosvold et al., 

1956; Cornblatt & Keilp, 1994; Weisbrod et al., 2000). 

5.1 5-Choice Serial Reaction Time Task 

The 5-choice Serial Reaction Time Task (5-CSR) is detailed in other reviews (Robbins, 2002; 

Chudasama & Robbins, 2004; Young et al., 2009), Briefly, the 5-CSR task involves a rodent 

being able to detect the presentation of light stimulus in one of 5 apertures at the rear of a 

dark operant chamber. Following successful detection of the light stimulus, the rodent must 

report its detection by nose-poking the aperture in which the light was presented, within a 

limited time period. Following a correct response, a food pellet is delivered and the next trial 

is initiated when the animal retrieves the food reward, also initiating the next trial. Following 

an inter-trial interval (ITI), another light stimulus is presented randomly in one of the 5 

available apertures. If the animal nose-pokes an aperture that the light stimulus was not 

presented in (incorrect response) or fails to respond within the limited time period following 
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the stimulus presentation (error of omission) there is a time out period where the animal 

doesn’t receive a food reward and the house light is illuminated for a period of 5 seconds. If 

the animal makes a response during the ITI, before the stimulus is presented, this is deemed a 

premature response and results in a time out period. Also, if the animal continues to respond 

following a correct response, a time out period is initiated as this is indicative of 

perseverative behaviour, whereby the animal fails to disengage from a behaviour that 

previously resulted in reward. 

The 5-CSR task measures elements of attention, namely sustained and divided attention, as 

the animal has to sustain its attention for the duration of the ITI in order to successfully detect 

and respond to the light stimulus, whilst dividing its attention across the 5 spatial apertures. 

Executive function is assessed in the form of premature or perseverative responding. 

Increases in premature responding indicate impairment in behavioural inhibition as the 

animal fails to inhibit its response until the stimulus is presented. Conversely, perseverative 

responding reflects the animal’s inability to disengage from a response that was previously 

rewarded. 

The 5-CSR task also measures various latencies involved in its performance such as the time 

taken from presentation of the stimulus to the animal making a correct response and the time 

taken to retrieve the food reward following a correct response. The former gives investigators 

insight into the animal’s speed of cognitive processing (one of the 7 domains of cognition 

affected in schizophrenia as outlined by MATRICS; Young et al., 2009) while the latter gives 

indications of the animal’s motor function or motivation to perform the task. 

Various brain regions have been implicated in successful performance of the 5-CSR task. 

Extensive work using excitotoxic agents to lesion specific areas of the brain has elucidated 

certain brain regions with direct involvement in performance of the task. The first is the 
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prefrontal cortex (PFC), in which specific behavioural aspects of the task can be dissociated 

to specific sub-regions such as the mPFC, orbitofrontal, infralimbic and prelimbic cortices. 

Other brain regions that have important significance in correct performance of the 5-CSR 

task include the anterior cingulate cortex, striatum and the thalamus (Muir et al., 1994; Muir 

et al., 1996; Rogers et al., 2001; Robbins, 2002; Chudasama et al., 2003) 

5.2 5-CSRTT and NMDA antagonists 

5.2.1 Intracerebral Injections of NMDA antagonists 

Baviera et al., (2008) used the competitive NMDA receptor antagonist 3-(R)-2-

carboxypiperazin-4-propyl-1-phosphonic acid (CPP), which was injected directly into the 

mPFC of male Lister Hooded rats (50 ng/side) trained in the 5-choice task. This experiment 

demonstrated that selective blockade of NMDA receptors specifically located within the 

mPFC produced a profound impairment in the rat’s ability to perform in the task. Bilateral 

injection of CPP (50 ng/side) in the mPFC region of the rat brain reduced choice accuracy, 

increased the number of omissions, increased correct latency and produced executive 

impairment in the form of increased perseverative and premature responding. These data 

clearly implicate the mPFC and a functioning NMDA glutamatergic system in successful 

performance of the task. These data were in agreement with results of Murphy et al., (2005) 

who also demonstrated that bilateral central infusion of CPP into the mPFC produced 

performance deficits in the 5-CSR task. However, Murphy et al., (2005) investigated the 

effects of CPP infusion (10 & 50 ng/side) in the prelimbic and the infralimbic cortices, which 

are specific sub-regions of the mPFC in male Lister Hooded rats. Their study demonstrated 

that blockade of NMDA receptors within different regions of the mPFC produced dissociable 

effects. Infusions of CPP produced a reduction in choice accuracy and an increase in 

omissions across both cortical regions within the mPFC; however, an increase in premature 
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responding was only evident when NMDA receptors contained within the infralimbic cortex 

(hippocampal dominated), but not the prelimbic cortex (amygdala dominated), were blocked. 

Murphy et al., (2005) suggested that these data demonstrated a dissociable role for the 

prefrontal-cortical glutamatergic system in executive control dysfunction, localised to the 

ventromedial infralimbic region of the mPFC.  

5.2.2 Systemic Administration of an NMDA receptor antagonist 

Amitai et al., (2007) investigated effects of systemic exposure of PCP on the performance of 

rats in the 5-CSR task and showed that acute administration of PCP (1.5 – 3mg/kg s.c. in 

male Wistar rats) produced a wide range of impairments in the task. Amitai et al., (2007) 

described these impairments as a nonspecific response-suppressive effect and suggested they 

were the result of a global inability of the rat to perform in the task. The effects included a 

reduction in choice accuracy and percent correct responding and an increase in the correct 

latency. As accuracy can be interpreted as a measure of attentional processing, Amitai et al., 

(2007) suggested that a single injection of PCP may have induced an attentional-specific 

impairment in task performance. These findings are in agreement with previous studies which 

demonstrated that antagonism of the NMDA receptor by either MK-801 or PCP resulted in a 

reduction in choice accuracy in the 5-choice task in rats and mice. (Grottick & Higgins, 2000; 

Higgins et al., 2003; Greco et al., 2005). 

A single dose of PCP resulted in a reduction in the number of premature responses, which 

may be attributed to the response-suppressive nature of an acute exposure to the drug rather 

than an effect on response inhibition. In addition, acute exposure to PCP resulted in an 

increase in response latency, which was not accompanied by an increase in magazine latency 

(Amitai et al. 2007). The group suggested that the increase in the time taken to respond is due 

to PCP interfering with the animal’s ability to processes cognitive information, consistent 



27 

 

with previous studies (Grottick & Higgins, 2000). Alternatively, a transient cognitive 

impairment rather than motor or motivational impairment as locomotor or motivation 

impairment would also produce an increase in the time taken for the animals to retrieve the 

food reward. Moreveor, acute administration of PCP produced no significant effects on 

perseverative responding in the 5-CSR task. These data strongly suggest that when PCP is 

administered systemically, it has the ability to disrupt the ability to perform in the 5-choice 

task (Amitai et al 2007). 

Amitai et al., (2007) also investigated the effects of a repeated PCP dosing regime (two initial 

doses of PCP (2mg/kg s.c.), followed by 5 consecutive doses of PCP) and its ability to induce 

impairment in the performance in the 5-CSR task. What the group concluded was that the 

repeated administration of PCP resulted in cognitive impairment, leading to significant 

reductions in accuracy, correct responses, increased premature responding and a significant 

increase in correct latency, without an effect on total trials completed or latency to collect the 

food reward. What this result indicates is that repeated PCP administration produces 

significant impairment in cognitive elements associated with successful performance with the 

task, without the motor or motivational disruption that is associated with acute PCP dosing. 

This method, therefore possibly represents a more reliable way to induce cognitive 

impairments that are associated with schizophrenia in the 5-CSR task, compared to acute PCP 

administration (Amitai et al., 2007) 

Preliminary studies in our laboratory showed that our sub-chronic PCP treatment regime 

produced no overt impairment in 5-choice performance, despite resulting in deficits in other 

behavioural tasks. However, when the criteria of the 5-CSR task were subtly manipulated, 

impairments in performance became evident. More specifically, when the ITI was reduced, 

subtle impairments in attentional functioning became apparent, resulting in slight yet 
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significant reductions in accuracy and percent correct responding, coupled with an increase in 

percent omissions, compared to control animals. These data are preliminary but support the 

idea that sub-chronic PCP may produce attentional impairments of relevance to 

schizophrenia. 

MK-801 also produced impaired performance of the 5-CSR task. Acute administration of 

MK-801 (0.008 – 0.25mg/kg i.p.) in male Sprague-Dawley rats produced a profile similar to 

the behavioural impairment that results from acute PCP exposure, namely a reduction in 

response accuracy coupled with an increase in the number of omissions and premature 

responding (Paine et al., 2007; Paine & Carlezon, 2009).  

5.3 5-CSR and Antipsychotics 

Amitai et al., (2007) reviewed the effects of several FGAs and SGAs, including haloperidol, 

clozapine, olanzapine, risperidone, and quetiapine, on the performance in the 5-CSR task, 

without previously impairing performance via pharmacological means or manipulating test 

parameters, in male Wistar rats. What this group concluded was that a selection of 

antipsychotic drugs produced no significant effect on the performance in the 5-CSR task, 

except at the higher doses used, which generally resulted in a reduction in correct responding 

coupled with a reduction in total trials completed. This indicates that higher doses of 

antipsychotics resulted in motor or motivational impairments consequently resulting in 

impaired performance of the task. The exception to this is that risperidone produced a 

significant reduction in premature responding at a dose (0.2mg/kg i.p.) that did not 

significantly affect correct responding, possibly indicating enhancement of behavioural 

inhibition manifesting itself as a reduction in impulsive behaviour. 

Amitai et al., (2007) also demonstrated that chronic clozapine (4mg/kg/day) exposure via 

osmotic minipumps for 14 consecutive days was effective in partially attenuating some of the 
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cognitive impairments induced by the repeated PCP dosing regime. They demonstrated that 

chronic clozapine attenuated the reduction in accuracy and reduced the increase in premature 

responding which resulted from the repeated exposure to PCP. In contrast, in a similar study, 

Amitai & Markou (2009) demonstrated that the attentional impairment and behavioural 

disinhibition induced by repeated exposure to PCP, was not attenuated by chronic exposure to 

quetiapine (10mg/kg/day via osmotic minipump). However, this study did demonstrate that 

attentional and executive impairments are reliably produced in rats following repeated 

treatment with PCP. 

In summary, the 5-CSR task is sensitive to the disruptive effects of NMDA antagonism and 

may be a valid behavioural paradigm that models aspects of cognitive dysfunction seen 

clinically in schizophrenia, namely attentional impairment and behavioural disinhibition. 

However, the 5-CSR task can detect the efficacy of some SGAs but not all, and is insensitive 

to any beneficial effects of such compounds, unless the rodent’s task performance is 

previously impaired by pharmacological means.  
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6.0 Social behaviour deficits: A model of negative symptoms of 

schizophrenia 

There are a number of social behavior(s) which are relevant to schizophrenia and many of 

these are utilized to establish preclinical behavioural tests of negative symptoms in a variety 

of species ranging from rodents to non-human primates. The one model which is most widely 

used in this respect is social interaction. Some less well studied models include social 

communication (measuring vocalisation) and social motivation (e.g. working for access to a 

conspecific, ie an animal of the same species, in our case a female rat from the same batch, 

but from a different cage). 

The social interaction task measures a range of behaviours displayed by a subject (typically 

rats, mice or monkeys) when exposed to an unfamiliar conspecific.  It involves the evaluation 

of social or asocial responses of the subject to the conspecific and is quantified differently by 

different research groups. However, there is a reason for the extensive use of this task to 

mimic negative symptoms of schizophrenia in animals.  Firstly, measurements of social 

interactions in animals are relatively straightforward in comparison with other negative 

symptoms, such as flattened affect or apathy. These symptoms are difficult to imitate and 

even identify in animals since lack of response to emotion evoking stimuli in animals may be 

completely independent of lack of emotion. Some attempts, however, have been made to 

model anhedonia by measuring reward seeking behaviours in the past. In contrast to many 

unsuccessful attempts to model the above mentioned aspects of negative symptoms, several 

groups have been able to successfully show inhibition of social interaction, induced by 

NMDA-receptor antagonists in animals (Becker and Grecksch, 2004; Bruins-Slot et al. 2005; 

Ellenbroek and Cools 2000; Sams-Dodd et al., 1999; Snigdha and Neill 2008a; b). 
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As is the case with most preclinical tests, a major factor for determining the usability and 

reliability for the social interaction test is that of cross-species translatability, face, construct 

and predictive validity. The concept of translatability is closely associated with face validity 

or resemblance between behaviours observed by the subject in an animal model and those of 

the human condition. Face validity in the context of the social interaction test with NMDA 

antagonist is deemed fairly accurate with most manipulations successfully interfering with 

normal social interaction in animals using either PCP (Sams- Dodd et al., 2005, Snigdha et 

al., 2008a, b) ketamine (Becker and Grecksch, 2004) or  MK01 (Rung et al., 2005) and 

resulting in deficits similar to that seen in patients with schizophrenia (Andreason et al., 

1990).  An extensive literature search reveals that of all the NMDA antagonists that are used 

to induce social interaction deficits, phencyclidine (PCP) is the most commonly used, 

followed by MK-801 and ketamine. Different groups have used different methodologies to 

study the behavioural changes induced by NMDA antagonists in the social interaction test. In 

Table 1 we attempt to summarize some of the differences in the methods employed by groups 

that use adult rats for testing.  

(Insert Table 1 here) 

Examination of social behaviours following acute exposure to PCP (2.5 mg/kg, and 4 mg/kg 

s.c) showed a reduction in social interaction in adult male rats (Bruins- Slot et al., 2005; 

Sams-Dodd, 1998). Both these studies used a 3 day pre-treatment time with PCP (prior to 

acute exposure) to allow for tolerance to the initial response to the drug to develop. Our 

group has shown that a treatment regime of sub-chronic PCP (2 mg/kg twice daily for seven 

days followed by a 1 to 6 week washout period) reliably impairs social interaction in adult 

female rats (Snigdha and Neill. 2008a; b). More recently, Audet et al. (2009) have shown 

compromised social interaction behaviours using another sub-chronic PCP treatment regime 
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in male rats (10 mg/kg, once a day for 15 days) when tested 20 h after the 1st, the 8th and the 

15th injection. Social behaviour deficits have been reported in mice during withdrawal (for 

up to 28 days) from chronic PCP treatment (10 mg/kg/day for 14 days; Quia et al., 2001). 

Impairments in social interaction have also been reported in rats treated with PCP (10 mg/kg, 

s.c.) on postnatal days 7, 9, and 11 (Harich et al., 2007) and in adolescent rats (PD 50–51) 

injected with PCP (9 mg/kg), twice per day at a 12-h interval for two consecutive days. Drug 

effects were tested during the acute drug state (PD 50–51) and post-drug phase (PD 54–80) 

and in adulthood (after PD 80) and PCP was shown to decrease social interaction during the 

first 8 min of the test (White et al., 2009).  

MK-801 has been shown in some but not all studies to produce similar deficits in social 

behaviours in adult male rats following both acute treatment (0.2 mg/kg, ip; Rung et al., 

2005) and a sub-chronic dosing regime (0.13 mg/kg/day ip for 14 days; Matsuoka et al., 

2005). Sams-Dodd in 2004 used different dosing regimes of MK-801 (group 1: 0.063 or 0.5 

mg/kg for 7 days, s.c with mini osmotic pumps) where the rats were tested in the social 

interaction test 21 days post drug administration and (group 2: 5mg/kg of MK-801, on 

alternate days for 4 days) with the rats were being tested following a 7 day washout period. 

The same study also reported the effect of PCP (5.0; 10.0; 20.0 and 30.0 mg/kg/day for 6 

days, s.c with mini osmotic pumps) with testing in social interaction conducted 7 days later. 

These doses are known to produce mild to extensive non specific regional neurotoxicity 

(including the retrosplenial cortex- in contrast to the specific GABA interneuron deficits in 

PFC and hippocampus induced by lower doses) but failed to provide additional support for 

the face validity of this model in that rats tested 7 to 21 days after the last drug administration 

did not show impaired social behaviour. To the best of our knowledge, no studies have 

reported the effect of MK-801 treatment in the social interaction test in female rats. 
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Even fewer studies have reported the effects of ketamine on social behaviours in animals. An 

acute low dose of ketamine (7 mg/kg) has been reported to reduce social interaction in adult 

male rats (Silvestre et al., 1997). Another study by Becker et al., (2003) has reported that two 

weeks after the final ketamine injection dose (30 mg/kg ip ketamine daily for five 

consecutive days), the percentage of nonaggressive behaviour (sniffing, following and 

grooming the partner, social play) was decreased in ketamine-treated rats. These studies 

suggest that treatment with both acute and sub-chronic doses of ketamine may induce social 

interaction deficits relevant to negative symptoms of schizophrenia. However it must be 

noted that the construct validity of these models is harder to achieve and/or to assess for a 

condition such as schizophrenia not only because the etiology of the condition still remains to 

be ascertained but also because very few studies in the literature report any findings about the 

electrophysiological or neurobiological effects of manipulations used to study social 

interaction deficits. In this respect, Katayma et al., (2009) have recently reported that 

systemic administration of PCP (10mg/kg) induces long-lasting activation in only half of the 

neurons that exhibited an increase in firing rate during normal social interaction in the 

basolateral amygdala. Interestingly, monkeys with amygdala lesions show several social 

deficits and are expelled from the social group. Another study by Matsuoka et al. (2008) 

demonstrated a down-regulation in 23 genes and up-regulation in 16 genes, with the gene 

encoding arginine-vasopressin being most down-regulated, and that for transthyretin (Ttr) 

most up-regulated in the amygdala following MK-801 (0.13 mg/kg for 14 days) treatment in 

adult male rats. Indeed it has been suggested that there is a close relationship between 

dysfunction of the amygdala and social behaviour deficits seen in patients with 

schizophrenia. However, no studies to date have reported a direct correlation between social 

interaction behaviours (post sub-chronic NMDA antagonism) and any neurobiological 

substrates. Future studies are required to further investigate the association between possible 
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neural mechanisms involved in the origin and development of social interaction deficits in 

animal models. At present, most studies in the literature relate to the predictive validity of the 

social interaction task. This refers to the ability of a task to accurately estimate and predict 

the therapeutic value of drugs for the human condition. The effect of different drugs on social 

interaction deficits observed following NMDA receptor antagonism is discussed beneath. 

Effects of antipsychotic drugs on the social interaction test 

Sams-Dodd (1997) identified that SGAs such as remoxipride, risperidone, sertindole, 

olanzapine and quetiapine all improved PCP- induced social interaction deficits in male 

Wistar rats.  Thereafter in 2005, a study by Bruins-Slot and colleagues showed that 

antipsychotic drugs with 5-hydroxytryptamine1A (5-HT1A) receptor partial agonist properties 

attenuate PCP-induced disruptions in social interaction in male Sprague–Dawley rats. This 

was followed by studies which confirmed that compounds having combined 5-HT1A receptor 

agonist/D2 receptor antagonistic properties, but not selective D2 antagonism reversed PCP-

induced social interaction deficits in both male (Boulay et al., 2004; Depoortere et al., 2007) 

and female rats (Snigdha and Neill 2008b).  

The effects of ketamine induced disruptions (30 mg/kg ip ketamine daily for five consecutive 

days in Sprague–Dawley rats) also have been shown to be reversed by both clozapine and 

risperidone but not haloperidol (Becker and Grecksch 2004) and those of MK-801 (0.2 mg/kg 

given acutely 30 minute prior to testing) in male Sprague–Dawley rats have reportedly been 

reversed by dopamine stabilizers but not by clozapine or haloperidol (Rung et al., 2005). The 

dopamine stabilizer, OSU6162 has also demonstrated some improvements in reducing both 

positive and negative symptoms in schizophrenia patients (Gefvert et al., 2000). On the 

contrary, FGAs have poor efficacy on negative symptoms (Möller, 2003) and the ability of 

clozapine to alleviate negative symptoms has been a subject of much debate. Taken together 



35 

 

these findings suggest that the social interaction model may have some predictive validity for 

identification of the anxiolytic or pro social effects of novel antipsychotic compounds. 

With the use of NMDA receptor antagonists in the social interaction task, behavioural 

impairments are observed in both the drug-free state after repeated NMDA antagonist 

administration followed by a lengthy washout (Audet et al., 2009; Snigdha and Neill., 2008a, 

b) and following repeated NMDA antagonist pretreatment to allow for tolerance to 

preliminary nonspecific behavioral disruption, but examination of behaviour during acute 

exposure to the drug (Sams-Dodd 1999; Bruins-Slot et al., 2005). Both social behaviour 

deficits observed during acute exposure of the animal to NMDA antagonists, and behavioural 

deficits observed after drug washout following repeated treatment with NMDA antagonists, 

are potentially relevant to schizophrenia pathology and allow for an interesting means to 

explore the mechanisms involved in impaired social functioning in schizophrenia patients. 
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 7.0 Neuropathology  

There is substantial evidence for neuronal abnormalities in schizophrenia. Results from both 

neuroimaging and neurochemical studies have identified a number of macroscopic findings 

indicative of neuronal dysfunction in a number of important brain regions implicated in the 

disorder, namely cortical and medial temporal lobe structures. These include increases in 

ventricular size, volume decreases and reduced energy metabolism (Lawrie and Abukmeil, 

1998; Wright et al, 2000). At a more microscopic level, there have similarly been reports of 

changes in a variety of neurotransmitter systems. As it is beyond the scope of this manuscript 

to review all of the systems in detail we will focus on changes relating to the major inhibitory 

neurotransmitter of the human brain, namely γ–aminobutyric acid (GABA). We shall also 

investigate the correlates with animal models based on the administration of NMDA receptor 

antagonists.  

7.1 Human post-mortem studies 

A defect in neurotransmission involving GABA in schizophrenia was first proposed in the 

early 1970s (Roberts et al., 1970). Since then an accumulation of evidence for abnormalities 

of the GABA system in schizophrenia has emerged with numerous post-mortem studies 

consistently reporting deficits relating to interneurons that contain GABA as their 

neurotransmitter (Blumm and Mann, 2002).  

Benes et al. (1998) reported a reduced density of GABA interneurons in the CA2/3 region of 

the hippocampus. These deficits were unrelated to antipsychotic treatment, suggesting a role 

of the disease process. In support of these findings others have reported both an increase in 

GABAA receptors in the hippocampus probably a consequence of a compensatory up-

regulation of the post synaptic receptors (Benes et al., 1996), along with a decrease in GABA 
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uptake sites (Reynolds et al., 1990). Taken together these studies provide initial evidence for 

abnormalities of GABA transmission in the brain in schizophrenia. 

More recently researchers have taken advantages of the availability of antibodies against a 

number of calcium binding proteins (CBP). These CBPs, namely parvalbumin (PV), 

calbindin (CB) and calretinin (CR) have been used as markers of specific subpopulations of 

non-overlapping GABAergic interneurons in the brain. Deficits in PV-immunoreactive cells 

have been reported in both the frontal cortex (Beasley and Reynolds, 1997; Beasley et al., 

2002; Refs) and hippocampus (Zhang and Reynolds, 2002) in postmortem brain tissue from 

patients diagnosed with schizophrenia. Whether these studies reflect deficits in the density of 

PV interneurons or that the interneurons are present but PV is not detectable was not 

answered. In a more recent study, Hashimoto et al., (2003) reported that at the cellular level a 

decrease in signal intensity for PV mRNA was attributable
 
principally to a reduction in PV 

mRNA expression per neuron
 
rather than by a decreased density of PV mRNA-positive 

neurons. 

One of the most consistent findings in post-mortem studies is that of reductions in mRNA 

and protein for GAD67, a synthesizing
 
enzyme for GABA, in the prefrontal cortex (PFC) of 

schizophrenia patients (Akbarian et al., 1995; Guidotti
 
et al., 2000; Volk et al., 2000).  

Furthermore, Hashimoto et al., (2003) demonstrated that mRNA expression deficits for
 
both 

GAD67 and the GABA transporter (GAT1) in schizophrenia brain tissue, are selective
 
for the 

PV-containing subclass of PFC GABA neurons. Taken together, these results suggest that 

both GABA synthesis and reuptake appear to be altered at the
 
level of gene expression only 

in the PV subset of GABA neurons, and the
 
resulting changes in GABA neurotransmission 

may contribute to
 
PFC dysfunction and as such cognitive deficits in schizophrenia (Lewis et 

al., 2005). 
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7.2 Animal post-mortem studies 

Some neuropathological features of schizophrenia, in particular alterations of local 

GABAergic interneurons, have been investigated in animal models of psychosis, based on 

prolonged exposure to NMDA receptor antagonists. Employing this model, numerous studies 

have reported deficits in PV-immunoreactive neurons with, when investigated, no change in 

the CR subset. These findings, which are summarised below, are consistently reported for the 

prefrontal cortex and hippocampus in the rat. 

7.2.1 Phencyclidine 

Acute administration of phencyclidine (PCP) has been found to produce deficits in PV 

mRNA in the reticular thalamus with no change in the prefrontal cortex. These pathological 

deficits are accompanied by deficits in a perceptual set shifting task, comparable to an aspect 

of executive dysfunction in schizophrenia (Egerton et al., 2005). However using a regime of 

chronic intermittent exposure to PCP, Cochran et al., (2003) reported decreases in PV mRNA 

expression in both the rat prefrontal cortex and reticular nucleus of the thalamus. Moreover, 

chronic PCP treatment given according to this regime also elicits a metabolic hypofunction, 

as demonstrated by reductions in the rates of glucose utilization, within these two regions, 

key structures displaying similar changes in schizophrenia.  

Using a sub-chronic PCP treatment regime we and others have reported deficits in PV-

immunoreactive neurons in the hippocampus of adult rats. Similar to the studies mentioned 

above, these deficits occurred alongside cognitive and behavioural alterations (Abdul-Monim 

et al., 2006; Jenkins et al., 2008).  Post-natal administration of PCP (on post-natal day 7) to 

rats has also been shown to selectively reduce cortical PV neurons, with no change in the 

hippocampus. This treatment regime does not affect the CR subset (Wang et al., 2008). 
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Through the use of cellular markers of apoptosis and neurogenesis the authors determined 

that the loss of PV-containing neurons was not due to an effect of PCP on proliferating 

neurons, but rather an effect on post-mitotic neurons. 

7.2.2 MK-801 

Studies using the NMDA receptor antagonist MK-801 have also reported deficits in PV 

interneurons in the hippocampus (Braun et al., 2007; Rujesca et al., 2006). As a functional 

consequence, local inhibition of pyramidal cells which is largely mediated by recurrent axon 

collaterals, originating from GABAergic interneurons, was altered. Following this treatment 

regime, these animals also showed cognitive deficits resembling findings in schizophrenia 

patients.  

Prenatal exposure (E15-E18) to MK-801 has also been shown to reduce the density of PV-

immunoreactive neurons in rat medial prefrontal cortex. This GABAergic 

neurodevelopmental disruption of GABAergic interneurons was present both pre- (day 35) 

and post-adolescence (day 63) (Abekawa et al., 2007).  

7.2.3 Ketamine 

Studies in rats repeatedly treated with ketamine found a decrease in the density of PV 

expressing cells in the hippocampus (Keilhoff et al., 2001). Repeated exposure of mice to 

ketamine induces the dysfunction of a subset of cortical fast-spiking inhibitory interneurons, 

with loss of expression of PV and GAD67 (Behrens et al., 2007). Ketamine also activates the 

innate immune enzyme NADPH-oxidase in the brain, and that the superoxide produced is 

responsible for the dysfunction of cortical PV neurons (Behrens et al., 2007).  

Neuronal production of interleukin-6 (IL-6) is necessary and sufficient for the ketamine-

mediated activation of NADPH-oxidase in brain. In vivo studies utilizing IL-6-deficient 
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mice, prevented the increase in superoxide by ketamine and rescued the interneurons 

(Behrens et al., 2008). Interestingly the effects of activation of the IL-6/ NADPH-oxidase 

pathway on the PV system are reversible in the adult brain, but irreversible in the developing 

cortex (Behren and Sejnowski, 2009). These studies provide an insight into the mechanism 

behind NMDA receptor antagonist induced reduction in PV neurons. Whether similar 

mechanisms hold true for PCP and MK-801 remains to be examined.  

The PV deficit appears consistently in the literature. Studies employed to date have reported 

these deficits in experiments utilizing different types of NMDA receptor antagonists, in 

different species and sexes, following a number of different treatment regimes and at a 

number of different testing points (Table 2 below provides a summary of these different 

studies).  

 Insert Table 2 here.  

As can be seen from the Table 2, the pathological deficits in these studies are often reported 

in association with other behavioural and neurochemical changes relevant to those reported 

for the human studies. Findings of both behavioural and pathological deficits in the NMDA 

receptor antagonist model similar to those found in schizophrenia, serve to further increase 

the face-and-construct validity of the NMDA receptor antagonist models. In particular 

deficits in prefrontal cortical pathology may be of particular importance with respect to the 

cognitive deficits found in these animals (Lewis et al., 2005).  
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8.0 Discussion and Conclusions 

8.1 General issues 

There are a number of important issues that arise from inspection of the work reviewed 

above. First the evidence seems almost overwhelming in favour of the use of NMDA 

antagonists to mimic cognitive (and some aspects of negative) symptoms in rodents along 

with associated neuropathological changes. The second issue is the inconsistencies between 

different studies in doses, dosing schedule used, strains of rats and variabilities in the test 

procedures, which are inescapable features of preclinical studies. A third issue is the use of 

female subjects in our studies and males in almost all other studies. It is important to 

acknowledge the clear sex differences in brain, behaviour and pharmacokinetics in rodents 

and humans, which affect outcome and ideally both male and female subjects should be used 

(see Cahill 2006 for review).  

8.2 Limitations of the NMDA antagonist model 

The NMDA antagonist model does not incorporate neurodevelopmental or genetic 

approaches, which are key to the etiology of schizophrenia in humans. This represents a 

limitation of the NMDA antagonist model in adult animals and must be duly acknowledged. 

One way to address this is the emerging use of neonatal NMDA antagonist treatment, most 

notably PCP on post-natal days 7, 9 and 11 (as recently demonstrated by Broberg et al. 2008; 

2009). We had attempted to combine a pharmacological approach with a neurodevelopmental 

one and treated isolation reared rats with PCP in our laboratory but we were not successful in 

producing greater or more robust cognitive deficits than those produced by our sub-chronic 

PCP regime alone (unpublished studies). The validity of using a pharmacological method to 

induce schizophrenia symptoms in animals should be questioned since not many cases of 
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schizophrenia are solely caused by using such drugs, even if they induce similar 

symptomatology in the short term as described in the Introduction.  

8.3 Validity of the NMDA antagonist model 

This brings us onto the next key issue, which is the predictive validity of the NMDA 

antagonist model. Many of the studies show positive effects of SGAs and lack of effect of the 

FGAs and cite this as a good example of predictive validity of the model which could be 

argued to not accurately represent the clinical situation, given the lack of efficacy of SGAs 

for improving cognitive deficits. However it is important to remember that we are using 

animals to mimic aspects of a complex human disease where patients have genetic and 

neurodevelopmental predispositions for the disorder, may have co-morbid drug abuse, and 

are commonly prescribed different pharmacological medications. In marked contrast, our 

animals have no genetic predisposition (unless transgenic mice are used) and no previous 

drug exposure. Instead they are genetically identical (if using an inbred strain) and live in 

optimal conditions (lighting, noise level, humidity etc) for that species with minimum stress. 

This makes it even harder to fully mimic a human disorder (particularly a psychiatric 

disorder) and this caveat is important to recognise. 

8.4 Sub-chronic versus acute NMDA antagonist dosing schedules 

A further important issue is the use of acute vs. chronic dosing schedules of NMDA 

antagonists. In our view, the use of a chronic (or sub-chronic) dosing schedule is of 

considerably more value in attempting to replicate the symptomatology and neuropathology 

of a chronic illness than acute drug induced effects, although this does not preclude the use of 

acute studies where appropriate. In the sub-chronic studies, , animals receive a fixed dosing 

regime of the NMDA antagonist at adulthood (in our laboratory this is 7 days treatment with 

2 mg/kg of PCP given twice daily at approx 9 am and 4 pm followed by at least a 7 day drug-
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free period before animals are tested). This dosing regime leads to robust and enduring 

cognitive, social behaviour and neuropathological deficits of relevance to schizophrenia as 

outlined above. Clearly this is of more value in providing a valid animal model than an acute 

pharmacological challenge, which mainly produces transient neurochemical alterations, but 

may have some value for a fast screening paradigm, often leading to proper dose selection of 

the appropriate antipsychotic drug for consequent chronic studies. The lasting deficits 

induced by this regime also allow us to retest our animals after acute effects of antipsychotics 

have worn off, thus making some attempt to adhere to the principles of the 3Rs (ie 

replacement, reduction and refinement).  Other advantages of such a paradigm include testing 

the animals in a drug-free state, therefore eliminating any confounding acute NMDA 

antagonist effects. Importantly, as evidenced in the neuropathology section, chronic treatment 

with NMDA antagonists induces lasting neurobiological changes of relevance to 

schizophrenia whereas acute treatment does not. The possibility of inhibiting or preventing 

such pathological changes with novel targets and therapies is a particularly exciting area of 

research and could lead to real advances in therapy for patients.   

8.5 Acute versus sub-chronic antipsychotic dosing schedules 

Another limitation stems from the efficacy of single doses of antipsychotic drugs in our 

animal models, whereas repeated treatment is often required in the clinic. The majority of 

studies showing a reversal of cognitive deficits in the animal models for some of the 

paradigms discussed above, involve acute administration of a drug (e.g. antipsychotic, 

specific receptor agonist/antagonist, novel cognitive enhancer etc.) immediately prior to 

testing. The resultant pharmacological effect of these drugs appears sufficient to reverse the 

deficit. Whether the reversal represents a complete loss of the deficit is unlikely, more a short 

term reversal due to a pharmacological effect of the particular treatment. For example, we 
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have previously shown that acute administration of clozapine reverses the deficit in NOR in 

the sub-chronic PCP animal model (Grayson et al. 2007). However if these animals are tested 

again in the NOR paradigm, the deficit reappears. More studies utilising long term treatment 

regimes with testing post-dosing could provide a better insight into effects of drugs that are 

more likely to result in molecular/pathological changes and that could abolish cognitive 

dysfunction in the long-term and provide a real benefit for patients. We attempted this with a 

28 day dosing schedule with asenapine in reversal learning where the improvement was still 

present the following day in the absence of asenapine treatment on day 17 (McLean et al. 

2010b)  

8.6 Summary 

In summary, in spite of the limitations outlined above, the use of NMDA antagonists to 

mimic cognitive and social behaviour deficits provides a relatively valid animal model for 

schizophrenia. Sufficient studies were conducted to show that acute and sub-chronic dosing 

regimes produce deficit symptoms of relevance to schizophrenia. More work is clearly 

needed to refine the model.  However, we recommend the use of PCP in a sub-chronic dosing 

regimen combined with the use of several different tests to assess the various domains of 

cognition affected in schizophrenia as outlined by MATRICS in addition to social behaviour 

and neuropathological studies.  
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TABLE 1 

 

Drug Dose Time of 

testing 

Sex/Strain Duration 

of test 

Pairing of 

animals 

Reference 

PCP Subchronic  

2.5 mg/kg 

for 3 days 

 Tested 

45 

minutes 

later 

Male Wistar 10 minutes saline/saline, 

drug/drug 

Sams-Dodd, 

1995 

PCP Subchronic  

2.5 mg/kg 

for 3 days 

Tested 

45 

minute 

later 

Male 

Sprague- 

Dawley 

10 minutes saline/saline, 

drug/drug 

Bruins Slot et 

al., 2005 

PCP Subchronic 

3mg/kg for 

14 days 

Tested 

24 hours 

later 

Male 

Sprague- 

Dawley 

10 minutes saline/saline, 

drug/drug 

Lee et al., 

2005 

PCP Subchronic 

10 mg/kg, 

for 15 days 

Tested 

20 hours 

later (on 

days 1, 8 

and 15) 

Male 

Long-Evans 

10 minutes saline/saline, 

saline/drug 

Audet et al., 

2009 

PCP Subchronic 

2mg/kg, bi-

daily for 

7days 

Tested 1-

6 weeks 

later  

Female 

hooded-

Listers 

10 minutes saline/saline, 

saline/drug 

Snigdha and 

Neill 2008a,b 

Ketamine Acute  

7mg/kg 

Tested 

30 

minutes 

later 

Male Wistar 10 minutes saline/saline, 

drug/drug 

Silvestre et 

al., 1997 

Ketamine Subchronic  

30mg/kg for 

5 days 

Tested 

10 days 

later 

Male 

Sprague- 

Dawley 

7 minutes saline/saline, 

saline/drug 

Becker et al, 

2003 

MK801 Acute 

0.2mg/kg 

Tested 

30 

minutes 

later 

Male 

Sprague -

Dawley 

30 minutes saline/saline, 

drug/drug 

Rung et al., 

2005 

MK801 Sub-Chronic 

0.13 

mg/kg/day 

for 14 days 

Tested 

45 

minutes 

later 

Male Wistar 10 minutes saline/saline, 

drug/drug 

Matsuoka et 

al., 2005 
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Table 1: A comparative table showing some of the differences in sex, strain, dosing regime 

and method of testing used by different groups (using adult rats) in the social interaction test. 
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Drug/Dose 

 
Time of 
testing 

Sex/Strain Parvalbimun Brain Region Behavioural 
Deficits  

References 

 

Phencyclidine 
Acute  (2.58 mg/kg)  
 
 
Chronic Intermittent 
Exposure (2.58 mg/kg) 
 
Subchronic  
(2 mg/kg bi-daily for 7 
days) 
 
Subchronic  
(2 mg/kg bi-daily for 7 
days) 
 
Subchronic  
(2 mg/kg bi-daily for 7 
days) 
 
Neonatal  
(10 mg/kg on PND 7) 
 
 
MK-801 
Chronic  
(0.02 mg/kg for 21 days) 
 
Chronic  
(0.02 mg/kg for 14 days) 
 
 
Prenatal exposure  
(0.2 mg/kg on E15-E18) 
 
 
Ketamine 
 
Subchronic 
(30mk/kg for 5 days) 
 

 

 
24hrs   
 
 
72hrs 
 
 
6 weeks 
 
 
 
6 weeks 
 
 
 
6 weeks 
 
 
 
PND56 
 
 
 
 
24hrs 
 
 
24hrs 
 
 
 
PND 35 & 63 
 
 
 
 
 
2 weeks 

 

 
Male hooded 
Long -Evans  
 
Male hooded 
Long –Evans 
 
Female Lister 
Hooded 
 
 
Male Lister 
Hooded 
 
 
Male Lister 
Hooded 
 
 
Male Sprague 
Dawley 
 
 
 
Male Long-
Evans 
 
Male Long-
Evans 
 
 
Male & Female 
Sprague 
Dawley 
 
 
 
Male Sprague 
Dawley 

 

 
Deficit in mRNA 
 
 
Deficit in mRNA 
 
 
Deficit in PV IR 
neurons 
 
 
Deficit in PV IR 
neurons 
 
 
Deficit in PV IR 
neurons 
 
 
Deficit in PV IR 
neurons 
 
 
 
Deficit in PV IR 
neurons 
 
Deficit in relative 
number of PV IR 
neurons 
 
Deficit in PV IR 
neurons 
 
 
 
 
Deficit in PV IR 
neurons 

 

 
Reticular  Thalamic 
Nucleus 
 
Reticular  Thalamic 
Nucleus, Prefrontal 
Cortex 
Hippocampus 
 
 
 
Hippocampus 
 
 
 
Prefrontal Cortex 
 
 
 
Cortical deficits 
 
 
 
 
Hippocampus 
 
 
Hippocampus 
 
 
 
Prefrontal Cortex 
 
 
 
 
 
Hippocampus 

 

 
Deficit in 
Attentional Set-
Shifting 
Metabolic 
Hypofunction in 
Prefrontal Cortex 
Deficits in 
Reversal 
Learning 
 
Disturbances in 
Social Interaction 
 
 
Deficits in Novel 
Object 
Recognition 
 
No change in 
calretinin 
immunoreactive 
neurons 
 
No change in 
calretinin IR 
neurons 
Cognitive deficits 
(Hole Board) 
 
 
Enhances PCP 
induced 
hyperlocomotion 
 
 
 
 
 
 

 

 
Egerton et al (2005) 
 
 
Cochran et al 
(2003) 
 
Abdul-Monim et al 
(2007) 
 
 
Jenkins et al (2008) 
 
 
 
Jenkins et al (2010) 
 
 
 
Wang et al (2008) 
 
 
 
 
Braun et al (2007) 
 
 
Rujesca et al (2006) 
 
 
 
Abekawa et al 
(2007) 
 
 
 
 
Keilhoff et al (2004) 
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Table 2: Summary of studies evaluating the effect of NMDA receptor antagonists on parvalbumin expression in the rat brain. The table highlights some of 

the differences in dosing regimens, time of testing following last treatment, sex, strain, and regions tested by a number of research laboratories. It also 

highlights any behavioural changes reported in the same studies. PND = post natal day; PV = parvalbumin; IR = Immunoreactive 
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